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ABSTRACT. A two-dimensional meso-scale model has been considered to study mountain drag, momentum and
energy fluxes across Khasi-Jayantia hills of India. The general expressions for mountain drag, momentum and energy
fluxes are derived for stratified rotating fluid. It is found that decrease of wind speed reduces the magnitude of mountain
drag, momentum and energy fluxes. As a result, the flow becomes nearly geostrophic. The study suggests that broaden of
mountain or increase in latitude (i.e., increase in f) reduces magnitude of mountain drag, momentum and energy fluxes.
When results are compared with stratified non-rotating flow, a significant impact of Coriolis force in the mountain wave

is noticed.
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1. Introduction

For mountains wider than about 50 km (depending
on wind speed) the Coriolis force begins to become
important. For the smaller scale mountains airflow is
characterized by generation and propagation of internal
gravity waves, where as for the boarder mountains it is
characterized by an anti-cyclonic vortex whose strength
decays rapidly with height.

Mountain wave problem has been examined
theoretically by a number of authors (Queney, 1947, 1948;
Scorer, 1949; Sawyer, 1959; Eliassen and Palm, 1961;
Blumen, 1965a, 1965b; Booker and Bretherton, 1967;
Jone, 1967; Eliassen, 1968; Bretherton, 1969; Lilly, 1972;
Buzzi and Tibaldi, 1977; Smith, 1978, 1979; Olafsson and
Bougeault, 1997; etc.). Sawyer (1959) and Blumen
(1965a,b) have shown that because of mountain waves,
the pressure is systematically higher on the upwind slopes
than on the downward ones. As a result, a net force is
exerted on the ground. This force is known as pressure
drag or mountain drag. Pressure drag or mountain drag is

one of the sinks in the atmospheric budget. Queney (1947)
using a two-dimensional linearised model, showed that as
the parameter Lf /U increases (L is mountain width,

f =2Qsing is the Coriolis parameter and U is the mean

wind speed), the flow gradually loses its wavelike
character in vertical x, z plane. Eliassen and Palm (1961)
showed that for 2-D linear gravity waves, the vertical flux
of horizontal momentum is independent of height, when
the waves are steady and non-dissipate in a non-rotating
system. Bretherton (1969) reviewed theories concerning
the propagation of internal gravity waves in a horizontally
uniform shear flow. Smith (1978) showed that drag occurs
due to the environmental wind perpendicular to ridge, and
such a cross flow is necessary but not sufficient for
production of drag.

Smith (1979) considered 2-D flow of a stratified
rotating fluid over a ridge using linear theory model of
Queney (1947). He calculated the influence of earth’s
rotation on mountain drag and showed that Coriolis force
play an important role.
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Olafsson and Bougeault (1997) considered a
numerical model to investigate the form and magnitude of
pressure drag created by elliptical mountains of various
heights (h) and aspect ratios (R) in flows characterized by
uniform upstream velocity (U) and stability (N). They
showed that for lower value of the non-dimensional height
Nh/U, the pressure drag is reduced by the effect of
rotation and on the other hand, for the large value
of Nh/U, the rotation has the opposite effect and
increases the drag. Mountain wave problem addressing
properties of mountain waves over Indian region was
studied by many authors (Das, 1964; Sarker 1965, 1966,
1967; Sarker et al., 1978; De, 1973; Hatwar, 1982; Kumar
et al.,, 1995 etc.). Kumar et al. (1995) has studied the
effect of latent heat release on windward side of the
mountain. Very recently Dutta (2001), Dutta et al. (2002)
and Dutta & Naresh (2004) studied vertical velocity,
fluxes of momentum and energy generated by mountain
waves over India. But these studies did not consider the
influence of earth’s rotation on mountain wave. Therefore,
the aim of the present paper is to develop a mathematical
model for deriving pressure drag, momentum and energy
fluxes taking into account the influence of earth’s rotation
for Khasi and Jayantia hills of India.

In this paper the mathematical approach to the
problem is described in section-2. Section-3 contains the
procedure for derivation of mountain drag and momentum
flux and in section-4 the derivation of energy flux is
given. The results obtained are discussed in section-5 and
finally conclusions are given in section-6.

2. The mathematical approach to the problem

The basic equations of conservation of momentum,
mass and density can be written as :

£+ﬂZxU +[£ij+gI2=0 (1)
Dt p

vU =0 2
Dé
Dt ®3)

A stratified, steady, hydrostatic, frictionless,

internally inviscid, rotating, adiabatic flow of a vertically
unbounded Boussinesq fluid across a two-dimensional
east-west oriented Khasi Jayantia hills is considered (De,
1973). With these assumptions and linearising the
equations (1) to (3), we get

ou’
V- fv'=0 4
E 4)

ov' , op’
poV 5+ Pof +szo (5)
VRN R L A (6)
o pooz "0
N W, @)
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V%+d—gw':0 (8)
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In the above linearisation the basic flow has been
taken (0,V,0) and perturbation (u’,v',w'), where,
u’,v'andw’ are components of velocity perturbation to the

incoming flow due to orographic barrier in the x, y and z
direction respectively. ', p’ and p' are the deviation

from the potential temperature, pressure and density
respectively. @ is basic state potential temperature and
po IS mean density.

As the earth rotates at a constant angular velocity o,
the rotation is characterized by Coriolis parameter,
f =2wsing, where ¢ denotes the latitude. The Coriolis

parameter f, gravitational acceleration g and potential
de .
gradient d—gwnl be taken as constant. Also, it is assumed
z

that basic flow is normal to ridge and is constant with
height. The value of V is taken as mean of winds at
different levels up to which southerly prevail. The
gravitational stability of basic state is characterized by
Brunt-Vaisala frequency N2 :%2—6 which is assumed
z

to be constant with height.

Near the ground the vertical velocity must satisfy the
boundary condition

w(y,z=0)=V— 9)

where, h(y) is the profile of Khasi -Jayantia hills and
its expression given by Sarker et al. (1978) is

h(y)=—— (10)

where, a=25.0 kmand H = 1.6 km
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Now, if f(k,z) be the Fourier transform of function

f(y,z), then they are related by

f(k, z)=i J. f(y,z)e™dy (10A)
2n 7
f(y,z)= jf(k,z)eiwdy (10B)

Now performing Fourier transforms of Eqns. (4) to
(8), we obtained

ikvi— fi =0 (11)
ikviv+ P _945_¢ (13)
po 0z 0
iki+ W o (14)
oz
ikvo+ 3% -0 (15)
dz

where ( is the Fourier transform of u’ and so on.

The system of Eqns. (11) to (15) reduces to a single
equation for W(k,z), which is Fourier transform of the

vertical velocity W(x,z)of a fluid parcel

2.4 A 2 2
0 bui 1 dpo W _ 2 '2 kz W=0 (16)
oz po dz oz ke —ks
N . ,
where, IZV is the Scorer’s parameter and
f
kf :v
let,
i 205 (16A)
po(2)

Now, substituting Egn. (16A) into Egn. (16) and
neglecting terms of second order of smallness, we get

2.4 2 2
0" Wo +k2[| —k }ivO -0 (16B)

oz° k2 —k?

The solution of Egn. (16B) is

|2_k2 1/2 |2,k2 1/2
k[ﬁ} : k[ﬁ] :
Wy (k,z)=Ae "/ +Be ‘ (17)
For vertically propagating hydrostatic wave
k << 1=10°m™ equation (17) will reduce to

iklz iklz
ko2 )1/2 + Be (kz—kf )1/2

Wo(k,z)er( (18)

Again, as energy is propagated at great height, B
should be equal to zero and consequently Eqn. (18)
reduces to

iklz

kz_k%)uz

Wo(k,z):Ae( (19)

Now, using Eqns. (9) and (10) in Egn. (19), we
obtain

iklz
k27k$)“2

Wy (k,2)= iaHVke e

Again using Eqgn. (16A), we get
iklz

w(k, z)=iaHV Po(0) gkt (20)
po(z)

3. Mountain drag

Consider the horizontal force exerted from below
across the chosen orography h(y). Assume that
perturbation vanish aty = c or y = -o0.

We consider the quantity
0 0 dn' 0 dp'

F: ,d ,: ,—d = — ’—d 21
Ipnfpdyyjndyy (21)

where 1'(y,z) is the height of the streamline above
undisturbed level.

Near the ground n'(y,z=0)=h(y)
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Also,

, ’
w =V _El 22
3 (22)

As the linearised momentum equation in the vy
direction is

’ ’

ov , 0
pOVE+p0fu +Ep=0

So,
T lav, T !
F= f poVN de f Ipou n'dy

__ j povV'%dw f j pou'm'dy (23)

—00

Using Egn. (22) in (23)

F=-pg I v'w'dy + fpg Iu’n’dy (24)

The first integral in Egn. (24) is the mountain drag
across a level surface, while the second is the Coriolis
force acting in the region between undisturbed level and
the vertically displaced streamline. Eqn. (24) is the correct
form of wave drag in a rotating fluid.

In similar fashion, we can show that momentum flux
(F1) generated by mountain wave as

Fu=po [ vwdy - fpy [un'dy 25)

—00 —00

From Egns. (24) and (25), it is clear that mountain
drag is equal to the negative of the momentum flux. Using
Paraseval’s theorem for Fourier integral, the mountain
drag can be written as

F =27, j W dk + 2xfpg I (7" dk (26)

—00 —00

where, W* and 7" are complex conjugates of W and
n respectively.

Now, using Eqns. (11) and (14) in Egn. (26), we get

E—— 'Ool_,\"* _ Zwi@»\*

F =-2mp, I:[ " aszk ka_ 2 azn dk

(27)
From Eqn. (22),
W(k,z)=ikva(k,z) 28)
Using Eqn. (28) in Eqn. (27), we get

] > 1 OW
F= —ZHIPOI ——w dk + 2mipgkt j _3EW dk
( oW ..
2 _ 2
= —ZHIPoI 3 (k - kf )EW dk (29)
ikiz
12
As, vAv(k,z):iaHV\/pO_(O)ke—ake('<2—k?)1
po(2)
therefore,
ikiz
— =—iaHV pO(O)kZ ' - o-akg b2 [
po(2) (k2 —kf)‘

(30)

and
_ikz
2 2 }/2

W*(ki Z): _laHV —po(o)ke_ake(k _kf)1 (30A)

pol2)

Using Egns. (30) and (30A) in Egn. (29), it
reduces to

F = 21p(0)NVa?H? | (2-k2f%e2ak  (31)

—00

As momentum flux is equal to the negative of the
mountain drag, therefore, momentum flux can be written
as

F, =~2mpg(0)NVa?H? [ (k2-k2}2e2ak  (32)

—00
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Since, we are only interested in non-negative wave In similar fashion, we may get
hence Eqgn. (31) reduces to
F
R(py )=—2 (37B)
Fit-o

F = 2npo (OINVa?H? [ (k2 — ki [ &2 ok
0

Again to get real solution, we need to integrate only 4. Energy flux

over range of k, where k* > K§ As shown by Eliassen and Palm (1961), the
expression of vertical flux of wave energy is

Hence,

F = 21y (0)NVaZH? j(k2 k2 f%ekak (39) E= | pwx

k¢ -

For f =0=k; =0, Eqn. (33) becomes _ 27r.|.pw dx (38)

Fio= znpo(o)NVazHZJ'ke—zakdk

0 Using Egns. (11), (12) and (14) in Eqgn. (38), we get

Froo =~ po (0)NVH? (34) e oy [ % kz)av‘vA*dk -

2 =—2mipg J-F —Ki W 39)
Using Eqn. (34) in Eqgn. (33), we get

Substitute Eqns. (29) and (30) into Eqgn. (39), we get

00

/12 _
F :4Ff:OJ.(k2 k2 [ 2e gk (35) . .
kf Ezznpo(o)szazHZJ'(kz—ki)‘ e ?*dk  (40)
. f
Substituting  p; =2ak; = Zav and  p=2ak For non-negative and real solution Eqn. (40)
into Eqgn. (35) becomes
F =F oR(ps) (36) E =2mpo(0)NV 2aZHZJ.(k2 —kf)uze_zakdk (41)

where, ki
o /2 It is clear from Eqgns. (31) and (41) that mountain
R(pf ): J'(p2 — p%)‘ e Pdp (37) drag and energy flux is vertically upward for vertically

Ps propagating wave.

From Eqn. (36), we get For f =0=k; =0, Eqgn. (41) becomes
F
Rip¢ )= 37A @
(pf ) Fioo s E¢_o = 21po(0)NV 2a’H? Ike‘zakdk

kf
So R(pf) is the ratio of mountain drag in rotating

stratified atmosphere to mountain drag in non-rotating :1 NV 2H2 42
stratified atmosphere (i.e., for f = 0). npO(O) (42)
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Fig. 1. Relationship between R(p;) and V(ms™)

Using Egn. (42) in Eqgn. (41), so Eqgn. (41) becomes

E=4E, j(k2 k2 J2e gk (43)
ks

Again substituting p; =2ak; = Zan into Eqgn.

(43), we get

E=EoR(p() (44)

From Eqn. (44),
E

Rpe)=2 (44A)
f=0

Equations (37A), (37B) and (44A) show that
respective ratios of mountain drag, momentum and energy
flux between stratified rotating flow and that of stratified
non-rotating flow are same.

5. Discussion
Mountain drag, momentum and energy fluxes are

investigated for stratified rotating fluid over Khasi-
Jayantia hills. The analytical expressions for drag and

fluxes are obtained for stratified non-rotating flow
(i.e., for f = 0). For rotating stratified flow (i.e., for f £ 0),
the expressions of mountain drag, momentum flux and
energy flux are obtained in the form of integral, which are
difficult to evaluate analytically. So, we evaluated these
expressions numerically by using Gaussain-Legurre
method in term of R(pf) for different values of mean

wind, as shown in Fig. I. From Fig. 1, it appears that
R(pf ) asymptotically approaches to the value 1. Thus for

higher mean wind (> 25ms™) the Coriolis force has
practically no influence on the flow generated by a bell
shaped mountain with half-width 25 km. But for the light
wind (i.e., wind speed less than 10 ms™ the contribution of
f is significant. In the case of light wind speed, the
contribution of rotation is very strong and magnitudes of
drag and fluxes become negligible. The resultant flow
becomes nearly geostrophic. From the study, it can be
seen that as the mean wind decreases or as latitude
increases (f increases) the magnitude of mountain drag,
momentum flux and energy flux decreases from its value
atf=0.

Equations (24) and (25) show that both mountain
drag and momentum flux are equal in magnitude and
opposite in sign. Equations (37A), (37B) and (44A) show
that respective ratio of mountain drag, momentum flux
and energy drag in rotating stratified atmosphere to non-
rotating stratified atmosphere is same. This indicates that
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variation of drag and fluxes for rotating stratified and non-
rotating stratified flow are same.

6. Conclusions
Following conclusions can be drawn from this study:

(i) Increase of latitude causes decrease of mountain
drag, momentum flux and energy flux from its value at
f=0.

(i) The impact of Coriolis force on mountain drag,
momentum flux and energy flux is to reduce them for
light wind.

(iii) Decrease of wind speed reduces magnitude of
mountain drag, momentum flux and energy flux from its
value at f = 0 and the resultant flow becomes nearly
geostrophic.

(iv) As f increases or as mountain become broadens, the
magnitude of mountain drag, momentum flux and energy
flux decreases from its f = 0 value.

(v) For a vertically propagating mountain wave, energy
flux is vertically upward and momentum flux is vertically
downward.

(vi) For wind speed more than 15 ms™ the magnitude of
mountain drag, momentum flux and energy flux for
stratified rotating flow becomes nearly equal to that of
stratified non-rotating flow.

(vii) Ratios of mountain drag, momentum flux and energy
flux between stratified rotating flow and that of stratified
non-rotating flow are same.

Acknowledgements

Authors are grateful to Shri S. R. Kalsi, Additional
Director General of Meteorology (Services), for his kind
encouragement and interest in this research work. The first
author also like to thanks Dr. S. N. Dutta, Director,
Central Training Institute, Pashan, Pune for his valuable
suggestions and encouragement.

References

Blumen, W., 1965a, “A random model of momentum flux by mountain
waves”, Geopys. Publ., 26, 1-33.

Blumen, W., 1965b, “Momentum flux by mountain waves in a stratified
rotating atmosphere”, Journal of the Atmospheric Science, 22,
529-534.

Booker, J. R. and Bretherton, F. P., 1967, “The critical layer for internal
gravity waves in a shear flow”, Journal of Fluid Mechanics, 27,
513-539.

Bretherton, F. P., 1969, “Momentum transport by gravity waves”,
Quarterly Journal of Royal Meteorological Society, 95,
213-243.

Buzzi, A. and Tibaldi, S., 1977, “Inertial and frictional effects on
rotating stratified flow over topography”, Quarterly Journal of
Royal Meteorological Society, 103, 135-150.

Das, P. K., 1964, “Lee waves over large Circular Mountain”, Indian J.
Met. & Geophys., 15, 4, 547-554.

De, U. S., 1973, “Some studies of mountain waves”, Ph. D. Thesis
submitted to Banaras Hindu University.

Dutta, S. N., 2001, “Momentum flux, energy flux and pressure drag
associated with mountain wave across western ghat”, Mausam,
52, 2, 325-332.

Dutta, S. N., Maiti, M. and De, U. S., 2002, “Waves to lee of a meso-
scale elliptic orographic barrier”, Meteorol. Atmos. Phys., 81,
219-235.

Dutta, S. N. and Kumar, Naresh, 2005, “Parameterization of momentum
and energy flux associated with mountain wave across Assam-
Burma hills”, 56, 3, 527-534.

Eliassen, A., 1968,” On meso-scale mountain waves on the rotating
earth”, Geophys. Publ., 27, 1-15.

Eliassen, A. and Palm, E., 1961, “On the transfer of energy in stationary
mountain waves” Geophys. Publ., 22, 3, 1-23.

Hatwar, H. R., 1982, “Some numerical experiments on airflow over
mountains”, Ph. D. Thesis, Indian Institute of Science,
Bangalore, India.

Jones, W. L., 1967, “Propagation of internal gravity waves in fluids with
shear flow and rotation”, Journal of Fluid Mechanics, 30,
439-448.

Kumar, P., Singh, M. P., Padmanabhan, N. and Natrajan, N., 1995,
“Effect of latent heat release on mountain waves in sheared
mean flow”, Mausam, 46, 2, 111-126.

Lilly, D. K., 1972, “Wave momentum flux - A GARP problem”, Bulletin
of American Meteorological Society, 53, 17-23.

Olafsson, H. and Bougeault, P., 1997, “The effect of rotation and surface
friction on orographic drag”, Journal of the Atmospheric
Science, 54, 193-210.

Queney, P., 1947, “Theory of perturbations in stratified currents with
applications to airflow over mountain barriers”, Misc. Rep. No.
23, Dept. of Meteor., University of Chicago, p81.

Queney, P., 1948, “The problems of airflow over mountains : A
summary of theoretical studies”, Bulletin of American
Meteorological Society, 23, 16-26.

Sarker, R. P., 1965, “A theoretical study of mountain waves on western
ghat”, Indian J. Met. & Geophys., 16, 4, 563-584.

Sarker, R. P., 1966, “A dynamical model for orographic rainfall”, Mon.
Wea. Rev., 94, 9, 555-572.



778 MAUSAM, 56, 4 (October 2005)

Sarker, R. P., 1967, “Some modification in a dynamical model of
orographic rainfall”, Mon. Wea. Rev., 95, 673-684.

Sarker, R. P., Sinha Ray, K. C. and De, U. S., 1978, “Dynamics of
orographic rainfall”, Indian J. Met. & Geophys., 29, | & 2,
335-348.

Sawyer, J. S., 1959, “The introduction of the effects of topography into
methods of numerical forecasting”, Quarterly Journal of Royal
Meteorological Society, 85, 31-43.

Smith, R. B., 1978, “A measurement of mountain drag”, Journal of the
Atmospheric Science, 35, 9, 1644-1654.

Smith, R. B., 1979, “The influence of Earth’s Rotation on Mountain
Wave Drag”, Journal of the Atmospheric Science, 36, 177-180.

Scorer, R. S., 1949, “Theory of waves in the lee of mountains”, Quart. J.
of Royal Meteorological Society, 75, p41.



