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सार – िजजेल मौसम स्ेेश के िलए सामान्यकक ृ चरम माश (GEV) िवृरण का उप्ोग करके वा�षक अिधकृम 
ृापमाश का मॉडल ृै्ार �क्ा ग्ा था। माश-क� डल (MK) और Kwiatkowski Philips, Schmidt and Shin (KPSS) के 
परयकण सथाशय् परैामय्र म� रैिखक �वकि� के िबशा एक िसथर मॉडल का सुझाव देृ  ेह�। क्�िसस और वषैम् आकंड़� से  पृा 
चला �क सामान्ृा क� धारणा को खा�रज कर �द्ा ग्ा था। सव��म मॉडल िशधार�रृ करशे के िलए संभावशा अशुपाृ 
परयकण का उप्ोग �क्ा ग्ा था और गुडशेस-ऑफ-�फ् परयकण� से पृा चला ह ै �क हमारा डे्ा िसथर गबंले िवृरण के 
साथ उप्ु� है। माक�व चेनस (MCMC) �ारा म�्े काल� प�िृ का उप्ोग करृे �ए अिधकृम संभावशा अशुमाश प�िृ और 
बा्ेिस्श दकि�कोण का उप्ोग गबंले िवृरण के मापदडं� को खोजशे के िलए �क्ा ग्ा और िविभ� अविध्� के िलए 
वापसय सृर �ा� �कए गए । 

 
जेईएल वग�करण: C1, C13, C46, C490. 
 
 
ABSTRACT. The annual maximum temperature was modeled using the Generalized Extreme Value (GEV) 

distribution to Jijel weather station. The Mann-Kendall (MK) and Kwiatkowski Phillips, Schmidt and Shin (KPSS) tests 
suggest a stationary model without linear trend in the location parameter. The Kurtosis and the Skewness statistics 
indicated that the normality assumption was rejected. The Likelihood Ratio test was used to determine the best model and 
the goodness-of-fit tests showed that our data is suitable with a stationary Gumbel distribution. The Maximum Likelihood 
estimation method and the Bayesian approach using the Monte Carlo method by Markov Chains (MCMC) were used to 
find the parameters of the Gumbel distribution and the return levels were obtained for different periods.  

 
JEL Classification: C1, C13, C46, C490. 
  
Key words  –  Generalized Extreme Value (GEV) distribution, Gumbel distribution, Maximum Likelihood 

estimate (ML), Markov Chains Monte-Carlo method (MCMC), Maximum temperature, Return 
level.  

 
 
1.  Introduction 
 

The Extreme Value Theory (EVT) provides a 
statistical framework to make inferences about the 
probability of very rare and extreme events. It is based on 
the analysis of the maximum (or minimum) value in a 
selected period. The modern theory of extreme value was 
developed between 1920 and 1940 by Fréchet (1927), 
Fisher and Tippet (1928); Gnedenko (1943) and Gumbel 
(1958). It finds application in many fields; for instance, it 
has been used to estimate the extreme levels of a river 
causing floods in hydrology: Coles and Tawn (2005); 
Renard et al. (2006) in France. Concerning precipitations 
and the risk of floods caused by this phenomenon, a 
considerable number of studies aiming to model such 
events can be found in the literature: Coles (2001); 
Friederichs (2010) in Germany, Kim et al. (2009) in the 
south of Korea, Boudrissa et al. (2017) in Algeria, Delson 

and Retius (2015) in Zimbabwe and Deka et al. (2011) in 
India. Other studies related to the risk of high temperature: 
Tadele et al. (2015) in South Africa and Husna Hasan           
et al. (2013) in Malaysia. 

        
Different methods can be used to estimate the 

parameters of the extreme laws such as the Maximum 
Likelihood method [Coles (2001); Smith (1999)], the 
Weighted Moments method [(Hosking (1990); 
Greenwood et al. (1979)] and semi-parametric methods 
[(Pickands (1975); Hill (1975)]. The Bayesian approach 
offers another estimation methodology. This method is 
based on the processing of the unknown parameters as 
random variables and then obtains appropriate estimators 
using Markov Chains Monte Carlo methods (MCMC). 
Bayesian analysis is becoming increasingly popular in 
many fields including meteorology and has shown its 
practical benefits in several applied problems. As an 
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example, Coles and Tawn (1996) adopted a Bayesian 
methodology to model the oceanographic flood events on 
the UK east coast, Khodja et al. (1998) applied a 
multivariate test for a shift in the mean of rainfall data of 
different stations in West Africa with a Bayesian 
argument, Lu and Berliner (1999) considered a class of 
Bayesian dynamic models that involve switching among 
various regimes for a runoff time series, Perreault et al. 
(1999) presented a Bayesian approach which can be used 
to study a change in the mean level of a set of independent 
normal random variables, Thyer and Kuczera (2000) 
developed a hidden state Markov (HSM) model as a new 
approach for generating hydro-climatic time series,           
Wang (2001) used a Bayesian approach to estimate the 
parameter of a bivariate generalized extreme value 
distribution, Thyer et al. (2002) used a Metropolis   
Hasting algorithm to simulate the posterior distribution of 
a Box-Cox transformation, Coles et al. (2003) adopted a 
Bayesian approach to model a set of daily rainfall 
extremes data on the central coast of Venezuela, Parent 
and Bernier (2003) developed an inference procedure for 
the peak over threshold (POT) model using semi-
conjugate informative priors, Renard et al. (2006) 
 presented a Bayesian application to the regional 
frequency analysis of extremes in a nonstationary           
context. Coles and Powell (1996) reviewed the literature 
linking the themes of Bayesian and extreme value 
analysis, Smith (1999) compared the Bayesian                       
and the frequentist approaches to study parametric 
predictive inference. The zyp (Bronaugh and                 
Werner, 2013), evd (Stephenson, 2002), extRemes 
(Gilleland and Katz, 2011) and ismev (Stephenson, 2014) 
packages of R (R core Team, 2015) were used for the data 
analysis.  

        
Jijel City (Fig. 1) is located in the northeastern 

region of Algeria with an area of 2396.63 km2. It is 
bordered from the east by Skikda city, from the West by 
Bejaia city, from the North by the Mediterranean Sea and 
from the South by Setif and Mila cities. Jijel has a 
Mediterranean climate characterized by mild and rainy 
winters with annual precipitations of 814 mm, hot and 
sunny summers. The annual average temperature in Jijel is 
around 18 °C.  

        
This study aims to use the block maxima approach 

by GEV distribution to model annual maximum 
temperature in Northern Algeria and tries to understand 
the changes in temperature caused by global warming 
which affect Algeria’s weather specifically Jijel city. Our 
objective is to investigate the temperature changes to 
forecast its extremely high levels that can occur in Jijel 
city and that authorities consider it to prepare a 
precautionary system against the catastrophes owing to 
high temperatures such as forest fires. 

In addition to this introduction, the paper is 
organized as follows: the GEV distribution, the Maximum 
Likelihood estimates of its parameters, the Bayesian 
estimate and the return level are presented in Section 2. 
The theoretical model is applied to data in Section 3. 
Finally, some conclusions are given in Section 4. 

 
2. Methodology 

 
2.1.  Generalized Extreme Value (GEV) distribution  
        
The extreme value theorem provides a theoretical 

framework to model the distribution of extreme events 
and the three-parameter GEV is recommended for 
meteorology frequency analysis. The three parameters are 
location, scale and shape. The GEV distribution is a 
family of continuous probability distributions developed 
within the extreme value theorem. The GEV distribution 
arises from the limit theorem of Fisher and Tippet (1928) 
and Gnedenko (1943). 

        
Supposing that X1, X2,…, XN is a sequence of 

independent random variables from a common 
distribution function F. The order statistic Mn = Max             
(X1, X2,…, XN) is the maximal value of the independent 
identically distributed (IID) random variables. The 
external type theorem states that if there exist normalizing 
constants (an > 0) and bn∈R such that:  
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where, G is a non-degenerate distribution function. 

The distribution of G belongs to the Gumbel, Frechet, or 
Weibull distribution. The combination of these three 
distribution families into a single-family model forms the 
GEV distribution as proposed by Jenkinson (1955) with 
cumulative function: 
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ξσµ and0, >  are location, scale and shape 
parameters, respectively. 



  
 
                     HASSEN : A BAYESIAN ANALYSIS OF THE ANNUAL MAXIMUM TEMPERATURE                    609 
  

 

By derivation of the distribution function specified in 
expression (1), the density function is given by: 
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The classical GEV; G (x, μ, σ, ξ) model assumes that 
the three parameters of location, scale and shape are time-
independent. However, if trends are detected in the data 
sample, the non-stationary case where parameters are 
expressed as covariates (e.g., time) should be considered. 

 
2.2.  Selection Period, model choice and Stationary 

Test 
        
The data of extreme value are grouped into blocks of 

equal length n. The maximum of each block forms a series 
of block maxima M1, M2, M3…, Mn to be fitted with the 
GEV distribution. The selection of block size is critical as 
a too-small block can lead to a bias and if too large 
leading to a large estimation variance (Husna et al., 2018). 
In this study, data of maximum temperature are divided 
into annual blocks. Three models are considered : a 
stationary model M1 = GEV1 (μ, σ, ξ) with constant 
parameters μ, σ and ξ, a non-stationary model M2 = GEV2 
[μ (t), σ, ξ)] with time as covariates in the location 
parameter : μt = μ0 + μ1t, ξ and σ are constants and 
stationary Gumbel model M0 = GEV0 (μ, σ, 0) with ξ = 0 
and μ, σ are constants. The stationarity assumption must 
be checked before the GEV model is fitted. The following 
tests are proposed:  

 
2.2.1.  Mann Kendall test 
       
 The non-parametric Mann-Kendall test is used to 

determine if the values of a random variable follow a 
monotonic trend (Ryden, 2011). The null hypothesis states 
that no trend exists. This test does not conform to any 
particular distribution and is particularly useful if datasets 
have missing values (Husna et al., 2018). 

 
2.2.2.  Kwiatkowski Phillips, Schmidt and Shin 

(KPSS) test 
        
The KPSS test is applied to the data to check the 

stationarity. The null hypothesis of the KPSS test is that 
there is no trend, while the alternative hypothesis is that 
there is a trend in the data. 

2.3.  Model diagnostic and validation tools  
 
The goodness-of-fit of the model is assessed by the 

following methods: 
 
2.3.1.  The Likelihood Ratio test 
        
The Likelihood Ratio (LR) test is used to compare 

the fit of the null model M0 and the alternative model M1 
(M0 is a special case of M1). The LR test statistic defined 

as: 




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
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0ln2
L
Lλ . 

 
where, L0 and L1 represent the Likelihood of the 

model M0 and M1 respectively. λ  has a Chi-Square 
distribution with one degree of freedom (Boudrissa et al., 
2017).  

 
The null model (M0) is preferred if 

.8415.32
95.0,1 =≤ χλ  Otherwise, the alternative model 

(M1) is more suitable. 
 
2.3.2.  Quantile-Quantile plot (Q-Q) 
        
The (Q-Q) plot assesses the adequacy of a fitted 

distribution by comparing the (1/n + 1)th quantiles 
deriving from the theoretical and empirical distributions. 
If the two distributions being compared are similar, the 
points in the Q-Q plot will approximately lie on the 
diagonal line. 

 
2.3.3.  The goodness of fit tests  
        
These tests [Kolmogorov Smirnov (KS), Anderson 

Darling (AD) and Cramer Von Mises (CVM)] are often 
used for comparing an empirical distribution determined 
from a sample Fn(x) to a theoretical distribution F(x). The 
null hypothesis is Fn(x) = F(x) and the alternative 
hypothesis is Fn(x) ≠  F(x). 

 
The distributions of their statistics are the subject of 

the statistical tables (KS, AD and CVM tables), which 
take into account the sample size and the accepted error 𝛼. 
It is then sufficient to compare the observed value with the 
appropriate value in the table. 

 
2.4.  Parameters estimates  
        
Several methods have been introduced in the 

literature to estimate the parameters of the GEV 
distribution; for example, the method of Moments by 
Christopeit (1994), the L-Moments method (Hosking, 
1990; Hosking and Wallis, 1997), for more details about 
this method see Hosking, 1990), the Bayesian method by 
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Smith and Naylor (1987); Lye et al. (1993); Coles and 
Tawn (2005) and the Maximum Likelihood method 
(Smith and Naylor, 1987) which is the most popular and 
has the advantage of allowing the addition to the fitting of 
co-variables such as trends, cycles, or physical variables 
(Katz and et al., 2002). 

 
2.4.1.  Maximum Likelihood method (ML) 
        
Under the assumption that X1, …, Xn are independent 

random samples having a GEV distribution, the log-
Likelihood for the GEV parameters when 0≠ξ is: 
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where, µµ =t for stationary three parameters model 

M1 = GEV (μ, σ, ξ) and tt 10 µµµ +=  for non-stationary 
four parameters model M2 = GEV [μ(t), σ, ξ]. 

       
We differentiated the log-likelihood of GEV to find a 

set of equations which we solved using numerical 
optimization algorithms. In the case ξ > -0.5, the usual 
properties of consistency, asymptotic efficiency and 
asymptotic normality hold (Delson and Retius, 2015). 

 
In the same way, for ξ = 0, the Logarithm of           

the Likelihood function for stationary Gumbel model      
M0 = GEV [μ, σ, 0] is given by: 
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Differentiating this function for the two parameters, 

the following system of equations is obtained  
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2.4.2.  Bayesian analysis of extreme value for GEVD 
        
The Bayesian approach improves the estimation 

accuracy by assuming the parameterθ  = (μ, σ, ξ) as a 
random variable. Bayesian inference, based on the central 

idea of Bayes’ theorem which as follows (Choeng and 
Gabda, 2017): 
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//                                     (2) 

 
where, x is the given observation. ( )xL /θ  denotes 

the likelihood function and ( )θπ  is the normal prior 
distribution. The denominator in equation (5) is treated as 
a normalizing constant so that the posterior distribution           
is integrated into one. Thereby, results 
( ) ( ) ( )θπθαθπ xx /L/ . Markov chain Monte-Carlo is 

employed to solve the complex computational of the 
posterior distribution in equation (2). The Markov chain 
Monte Carlo techniques are applied in this paper to give 
Bayesian analyses of the annual maximum temperature 
data for Jijel weather station. Markov chain Monte-Carlo 
is a simulation technique that can be used to find the 
posterior distribution and to sample from it by 
constructing a Markov chain that has the target 
distribution as its stationary distribution. In this paper, the 
prior is constructed by assuming that there is no 
information available about the process (temperature) 
apart from the data. The annual temperature data have a 
GEV, i.e, Xi ~ GEV(μ, σ, ξ) and the parameters μ, σ and ξ are 
treated as random variables for which we specify prior 
distributions. For specification of the prior, the 
parameterization σφ log= is easier to work with because 
σ is restricted to be positive. The specification of priors 
enables us to supplement the information provided by the 
data. The prior density is (Delson and Retius, 2015) : 
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where, each marginal prior is normally distributed 

with large variances. The posterior distribution is given as: 
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is the likelihood with σ replaced by φe . 
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Fig. 1. Location of Jijel city 
 

 
2.5. Metropolis-Hastings algorithm  
        
The Metropolis Hasting algorithm is a form of 

generalized rejection sampling. The proposal value *θ for 
1+iθ  is generated from arbitrary rule ( )iq θ/. . The Markov 

chain moves to 𝜃∗ with a specified acceptance probability. 
Specifically, let 
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where, ( )iq θθ /*  is denoted as proposal distribution. 

The candidate is accepted if the probability is                  
equal to iα . Otherwise, the Markov chain remains                 
in the current state iθ . The steps involved can be 
illustrated into the following algorithm (Choeng and 
Gabda, 2017). 

 
(i) Initialize 0θ  

(ii) In i iteration 
 

• Draw a candidate *θ from proposal distribution
( )iq θθ /*  

 
• Calculate the acceptance probability 

 
• Draw u ~ Uniforme (0, 1) 

 

If ui <α  then   Set *
1 θθ =+i Else ii θθ =+1  

 
(iii) Increment 1 and return to step 2 

 
2.6.  Return level estimate 
        
The return level is defined as a level that is expected 

to be equaled or exceeded on average once every interval 
of time (T) with a probability of P. The return level xp for 

the return period 
P
1 is the quantile of order 1 – P of the 

GEV distribution for 0 < P < 1. 
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TABLE 1 
 

Statistical properties of the annual maximum temperature  
at Jijel weather station 

 
N Min 1𝑠𝑡Qu Mediane Mean 3𝑟𝑑Qu Max Skewness Kurtosis 

31 24.9 25.70 26.10 26.35 26.75 28.60 0.75 2.75 

 
 

 
 

Fig. 2.  Plot of annual maximum temperature at Jijel weather station 
from 1988 to 2018 
 
 

 
 

Fig. 3.  The QQ plot for the Gumbel distribution of annual 
maximum temperature at Jijel weather station 

 
 

The return level xp is given by: 
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TABLE 2 
 

Stationarity checking tests 
 

Sen’s slope KPSS p-value Mann-Kendall p-value 

0.03 0.13 P = 0.068 

 
 
The Maximum Likelihood estimates of the return 

level xp can be obtained using the ML estimates of μ, σ 
and ξ. 

 
3.  Results and discussion 

 
3.1.  Data description  
        
The temperature data used in our study correspond to 

31 value of the annual maximum temperature from 1988 
to 2018, measured at Jijel weather station. To analyze the 
extreme temperature statistically in Jijel city (Fig. 1) with 
the GEV method, the monthly temperatures are grouped 
into blocks of size one year and the maximum of each 
block forms a series of block-maxima.   

 
3.2.  Descriptive analysis  
       
The analysis was based on the annual maximum 

temperature at Jijel weather station from 1988 to 2018. 
The series is given in Fig. 2 and its statistical 
characteristics are given in Table 1. According to Fig. 2, it 
seems that the series is not affected by a trend, it appears 
stationary.  From Table 1, it is found that our data is 
characterized by a mean of 26.35 °C. We note that 50% of 
the data are between 25.70 °C and 26.75 °C.  The 
Normality assumption is rejected for the series of the 
annual maximum temperature because the Skewness is 
greater than zero and the Kurtosis is different from 3. 

 
3.3.  Stationarity checking 
        
It is necessary to test whether the trend exists in our 

data. We have two types of stationarity tests : The Mann-
Kendall (MK) and the KPSS test. Those tests aim to check 
if data (annual maximum temperature) is stationary.  
Estimation of the trend by the least-squares method may 
not be appropriate, therefore Kendall’s tau test and the
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TABLE 3 
 

ML estimation of the parameters and theirs confidence intervals 
 

Models ML estimate 0µ  1µ  σ  𝜉  

Stationary GEV model 

𝑀1:𝐺𝐸𝑉1(𝜇,𝜎, 𝜉) 

Estimates 

Std.err 

CI 

- 

- 

- 

25.90 

0.15 

(25.6, 26.2) 

0.73 

0.11 

(0.5, 0.95) 

0.024 

0.16 

(-0.29, 0.33) 

Non stationary GEV 
model 

𝑀2:𝐺𝐸𝑉2(𝜇(𝑡),𝜎, 𝜉) 

Estimates 

Std.err 

CI 

25.49 

0.25 

(24.99, 25.98) 

0.03 

0.01 

(00, 0.05) 

0.68 

0.1 

(0.48, 0.89) 

0.04 

0.15 

(-0.25, 0.34) 

Gumbel model 

𝑀0:𝐺𝐸𝑉0(𝜇,𝜎, 0) 

Estimates 

Std.err 

CI 

- 

- 

- 

25.91 

0.14 

(25.64, 26.18) 

0.73 

0.10 

(0.53, 0.94) 

- 

- 

- 

 
 

TABLE 4 
 

The likelihood ratio test 
 

Models  Observed Chi-Squared Table Chi-Squared P-value 

𝑀1 −𝑀2 3.74 3.84 0.053 

𝑀0 −𝑀1 0.02 3.84 0.87 

 
 
 
Sen’s slope estimator are proposed to compute trend (Sen, 
1968). The results of this analysis are presented in        
Table 2. The results show that the trend is not      
significant for the annual maximum temperature (KPSS   
p-value = 0.13 and Mann-Kendall p-value = 0.068). 

 
3.4. Maximum Likelihood (ML) estimates of the 

parameters 
        
The Maximum Likelihood method was used to 

estimate the three parameters of the GEV distribution. The 
ML estimates of the location, scale and shape parameters 
and the associated 95% confidence intervals are given in 
Table 3. 

 
From Table 3, it is noted that the shape parameter ξ 

is positive in both models M1 and M2 
( )04.0;024.0

21
== MM ξξ , this is the case of Frechet 

distribution. Its value is near to zero implying that Gumbel 
distribution is candidate, the confidence interval of ξ 
confirms this conclusion .0 ξCI∈  

3.5. Model selection : the Likelihood Ratio          
(LR) test 

     
The LR test aims to compare the stationary GEV 

model M1 with the non-stationary one M2 at the first time 
and with stationary Gumbel model M0 at the second time. 
The results are presented in Table 4. 

 
As we compare the result of model M1 versus model 

M2 and Model M0 versus Model M1, it can be seen that the 
Gumbel Model M0 is preferred for Jijel weather station 
because of lowest observed Chi-Squared

( ) ( )[ ] .02.0and74.3
1021 ,, == MMMM LRLR  

 
3.6.  Model validation 
        
This section aims to validate the selected Gumbel 

model M0. In this step, the goodness of fit criteria is taken 
into account by using a graphical method (the Quantile- 
Quantile plot) and analytical methods (the non-parametric 
tests). 
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TABLE 5 
 

The Goodness fitting tests for the Gumbel distribution M0 
 

Tests Kolmogorov Smirnov test (KS) Anderson Darling test (AD) Cramer Von Mises test (CVM) 

Obs. Value 0.078 0.27 0.037 

P-Value 0.99 0.67 0.72 

Crit. Value 0.23 0.75 0.21 

 
 

 
TABLE 6 

 
Bayesian estimation of the parameters and its confidence intervals  

 

Model Bayesian estimate 1µ  σ  𝜉  

Gumbel model 

𝑀0:𝐺𝐸𝑉0(𝜇,𝜎, 0) 

Estimates 

Std.err 

CI 

25.90 

0.203  

(25.53, 26.33)   

0.83 

0.18 

(0.55, 1.25) 

- 

- 

- 

 
 
 
 
 

 
3.6.1.  The Quantile-Quantile (QQ) plot 
       
To validate the chosen model, the Quantile-Quantile 

(QQ) plot technique (Fig. 3) was used. It can be seen that 
for the annual maximum temperature the QQ plot is 
approximately linear; showing that the stationary Gumbel 
model M0 is adequate for the annual maximum 
temperature at Jijel weather station. 

 
3.6.2.  The Goodness of fit tests  
        
The results of the non-parametric tests (Kolmogorov 

Smirnov (KS), Anderson Darling (AD) and Cramer Von 
Mises (CVM)) are resumed in Table 5. 

        
For the 5% significant level, the calculated values of 

the 03 tests are less than all the critical ones. This leads to 
the decision of non-rejection of the null hypothesis. We 
conclude that the annual maximum temperature follow the 
specified stationary Gumbel model M0. 

 
3.7. Bayesian estimates of the parameters for the 

stationary Gumbel model M0 
        
The MCMC method was applied to the annual 

maximum temperature data. The GEV scale parameter 

was re-parameterised as φσ log=  to retain the              
positivity of this parameter. The prior density was chosen 
to be: 

 
( ) ( )10000,0~ Nµπ µ  

 
( ) ( )10000,0~ Nφπφ  

 
( ) ( ) ( )φπµπφµπ φµ~,  

 
The proposal distribution function is: 
 
( ) ( )1.0,0~/. Nq iθ  

 
A MCMC Metropolis Hastings random walk 

algorithm was applied such as: 
 

( )02.0,0~, Ni µµ εεµµ +=′  
 

( )1.0,0~, Ni φφ εεφφ +=′  
 
To check that the chain will converge to the correct 

place, the ML estimate of the three parameters was used 
as starting points ( )73.0,91.25 00 == φµ . 10000 iterations  
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Fig. 4.  Trace plots of the Gumbel distribution parameters using non-informative priors for annual 
maximum temperature at Jijel weather station (1988-2018) 

 
 

 

 
 

Fig. 5.  Posterior densities of the Gumbel distribution parameters using non-informative priors for 
annual maximum temperature at the Jijel weather station 

 
 

     
 

Figs. 6(a&b). Return levels of the annual maximum temperature : (a) ML return levels estimates and (b) Bayesian return levels estimates 

(a) (b) 
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TABLE 7 
 

Return levels estimates  
 

Method / Period 
ML return levels Bayesian Return levels 

𝑥𝑃 (in °C)   CI 𝑥𝑃 (in °C)   CI 

2-year 26.18 (25.87, 26.48) 26.21 (25.80, 26.72) 

20-year 28.10 (27.35, 28.84) 28.70 (27.50, 32.23) 

50-year 28.78 (27.86, 29.71) 29.87 (27.94, 36.87) 

100-year 29.30 (28.23, 30.36) 30.93 (28.20, 42.17) 

200-year 29.81 (28.60, 31.02) 32.20 (28.20, 49.27) 

 

 
 
of the algorithm were carried out with a time of               
burn-in = 500. The results are resumed in Table 6.  Fig. 4 
shows the Markov chain Monte Carlo trace plots and the 
estimated posterior densities for the Gumbel parameters 
are given in Fig. 5. 

 
3.8.  Return level estimates 
        
The estimation of the T-year return levels for T = 2, 

20, 50, 100 and 200 are estimated using both ML and 
Bayesian methods with 95% confidence intervals (CI) as 
shown in Table 7 and Figs. 6(a&b). It can be seen from 
this Table that the return levels for maximum annual 
temperature and theirs confidence intervals increase 
slowly for higher return periods in both estimation 
methods.  

        
Note also that estimated return levels for Jijel 

weather station are slightly differ for the two estimation 
methods; the  Bayesian return level estimates                  
are consistently greater than ML ones  for all return 
periods. 
 
4.  Conclusions 

       
In this study, the annual maximum temperature from 

1988 to 2018 was modeled using stationary Gumbel 
distribution. The stationarity of our data was approved by 
the Mann-Kendall and KPSS tests which showed a non-
significant trend in the data. This result was confirmed by 
applying the likelihood ratio test to compare the stationary 
GEV versus the non-stationary one. Model diagnostics 
that included QQ plot and goodness fitting tests (KS, AD 
and CVM) showed that the annual maximum temperature 
follows a stationary Gumbel distribution. We rely on an 
alternative method of Bayesian MCMC based on the 
Metropolis-Hastings algorithm to estimate the parameters 
in order to predict different levels return and theirs coming 
periods. The Gumbel parameter estimates using the 

Bayesian approach were close to the maximum likelihood 
estimates, with larger standard deviations. Bayesian return 
level estimates show that it will be a high annual 
temperature in the next years, it is approximately 30,93°C 
for 100 years-return level. The Algerian government 
should take the measure of prevention of the risk that can 
be caused by this expected pick of temperature by setting 
up an alert and vigilance plan. The use of an informative 
prior or using a pick over high threshold approach POT 
based on the generalized Pareto distribution GPD may 
improve the work. 
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