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A MATHEMATICAL MODEL FOR MOUNTAIN 
WAVE IN A STRATIFIED ROTATING 
ATMOSPHERE ACROSS WESTERN GHATS 
 

1.  How does a fluid behave, when it crosses an 
obstacle ? It is a interesting problem of fluid dynamics. 
Challenges to this subject have been attempted by many 
researchers. Due to orographic waves, the pressure is 
systematically higher on the upwind slopes than the 
downward slopes and thus exerting a net force on the 
ground. This pressure force is known as pressure drag or 
mountain drag. It is one of the sinks in the atmospheric 
budget. 
 
 

Mountain wave problem has been examined 
theoretically by a number of authors like Queney (1947 & 
1948); Scorer (1949); Sawyer (1959); Eliassen and Palm 
(1961); Blumen (1965a & 1965b) ; Booker and Bretherton 
(1967); Jones (1967); Eliassen (1968); Bretherton (1969); 
Lilly (1972): Merkine and Kalnay-Rivas (1976); Buzzi 
and Tibaldi (1977); Mason and Sykes (1978); Smith (1978 
& 1979); Eliassen and Thorsteinsson (1984); Olafsson and 
Bougeault (1997) etc. Queney (1947) using a two-
dimensional, Boussinesq linearised model, showed that as 
the parameter ULf /  increases (L is mountain width, 

φsin2Ω=f  is the coriolis parameter and U is the mean 
wind speed), the flow gradually loses its wavelike 
character in vertical x, z plane. Eliassen and Palm (1961) 
showed that for 2-D linear gravity waves, the vertical flux 
of horizontal momentum, due to waves, is independent of 
height, when the waves are steady and non-dissipative. 
Blumen (1965a) noted that the magnitude of the wave 
drag is sensible to the vertical wavelength. He also 
showed that the maximum value of the drag attained when 
the vertical wavelength is twice the maximum height of 
the mountain. Booker and Bretherton (1967) showed that 
vertical flux of horizontal momentum not conserved in a 
rotating system. Bretherton (1969) reviewed the theories 
concerning the propagation of internal gravity waves 
(IGW) in a horizontally uniform shear flow. Smith (1978) 
had determined the pressure drag on the Blue-ridge 
Mountain in the central Appalachians. During the first two 
weeks of January 1974, he observed several periods with 
significant wave drag with pressure differences typically 
of the order of 50 Nm-2  across the ridge. Smith (1979) has 
considered 2-D flow of a stratified rotating fluid over a 
ridge using linear theory model of Queney (1948). He 

calculated the influence of earth's rotation on mountain 
wave drag and showed that coriolis force plays an 
important role. Olafsson and Bougeault (1997) considered 
a numerical model to investigate the form and magnitude 
of pressure drag created by elliptical mountains of various 
heights (h) and aspect ratios (R) in flows characterized by 
uniform upstream velocity (U)  and stability (N). They 
showed that for lower value of the non-dimensional 
height UNh / , the pressure drag reduced by the effect of 
rotation and on the other hand, for the large value of 

UNh / , the rotation has the opposite effect and increases 
the drag. Mountain wave problem addressing properties of 
mountain waves over Indian region studied by many 
authors (Das (1964); Sarker (1965, 1966 & 1967); De 
(1973); Sarker et al. (1978); Kumar et al. (1995); Dutta           
et al. (2002) etc.).  Dutta (2001) and Dutta & Naresh 
(2005) studied fluxes of momentum and energy generated 
by mountain waves over India. 
       
 

The aim of this paper is to develop a mathematical 
model to obtain pressure drag, momentum and energy flux 
taking into account the rotation of earth for western ghats 
of India. 

 
 
2.  The mathematical approach to the problem -

Considering the steady and frictionless flow of vertically 
unbounded Boussinesq fluid under the hydrostatic 
conditions, the governing equations for a two-dimensional 
north-south oriented Mumbai-Pune section of the western 
ghats are given by  
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where u′ , w′ , p′  and ρ′  are  the perturbation zonal 
wind, vertical wind, pressure and density respectively.  
The mean density ( )0ρ , gravitational acceleration ( )g  and 

vertical density gradient 
zd
ρd  are taken as constant. Also, 

it is assumed that basic flow is normal to ridge and is 
constant with height. The value of U has been taken as the 
mean of winds at different level up to which westerly 
prevail. φsinω2=f  is constant Coriolis parameter, ω  is 
the angular velocity of Earth and φ  denotes the latitude. 
            
 

The gravitational stability of basic state has been 
characterized by Brunt-Väisälä frequency 
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height. Near the ground, the vertical velocity must satisfy 
the boundary condition  
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where, )(xh  is the profile of western ghats, which 

disturbed the flow and is considered by Sarker et al., 
(1978) is  
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Western Ghats section along Bombay-Pune and 
km.88km,.52km,18.0 === bHa  for E-W Western 

Ghats section along Manglore-Agumbe. 
 

The Fourier transform of the equations (2.1) to (2.5) 
reduces to a single equation for ),(ˆ zkw , which is the 
vertical velocity of a fluid parcel in Fourier form 
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where, 
U
Nl =  is the Scorer's parameter and 

U
fk f = . 

The solution of Eqn. (2.8) is 
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For vertically propagating hydrostatic wave 
13 m10 −−≈<< lk  

  
Thus, Eqn. (2.9) reduces to 
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To allow the energy to propagate at great height and 
using Eqns. (2.6), (2.7) into (2.10), we get  
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3.  Mountain drag - Consider the horizontal force 
exerted from below across the chosen orography ( )xh . 
Assume that perturbation is vanish at ∞=x  or −∞=x   
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where, ( )zx,η′  is the height of the streamline above 

undisturbed level. As, near the ground ( ) ( )xhzx ==′ 0,η   
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Using Eqn. (3.2) into (3.1), we get  
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Now, using Paraseval’s theorem for Fourier integral, 
The Mountain drag becomes 
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where, ∗ŵ  and ∗ĥ  are complex conjugates of ŵ  
and ĥ respectively.                  
 

Using Fourier transform of Eqns. (2.2), (2.4), (2.11) 
and (3.2) to (3.4), we get  
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Expression (3.5) is the mountain drag in integral 
form. 
 

As Dutta (2001) has shown that momentum flux is 
equal to the negative of the mountain drag. Therefore, 
momentum flux will be 
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To get non-negative real solution, we need to 
integrate only over range of k , where 22

fkk >  
 

Therefore,  
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For 00 =⇒= fkf , Eqn. (3.7) becomes 
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Using Eqn. (3.8) into Eqn. (3.7), we get 
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Now, substituting 
U
faakp ff 22 ==  and akp 2=  

into Eqn. (3.9) 
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In similar fashion, we may get 
 

( )ff pRFF 011 ==                                                (3.12)   
 

4.  Energy flux - As shown by Eliassen and Palm 
(1961), the expression of vertical flux of wave energy is                                    
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Using Fourier transform of Eqns. (2.1), (2.2) & (2.4) 

into Eqn. (4.1), we get        
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Now, substitute Eqn. (2.11) into Eqn. (4.2), we get 
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For non-negative and real solution, Eqn. (4.3) 
becomes 
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Again, for 0=f , Eqn. (4.4) becomes 
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TABLE 1 
 

 Present results for rotating atmosphere Results for non-rotating atmosphere 
Date Time (UTC) U N F E Ff=0 Ef=0 

04 Jan '59 1200 12.3 0.60 2320705 28544671 3381501 41592462 

21 May '59 1200 13.7 0.61 2725914 37345022 3849731 52741315 

06 Dec '60 1200 12.3 0.61 2379117 29263139 3466613 42639340 

14 Dec '60 0000 06.7 0.61 1048232 7023154 1892394 12679040 

26 Dec '60 0000 09.6 0.61 1702887 16347715 2686633 25791677 

06 May '65 0000 12.8 0.61 2561961 32793101 3689302 47223066 

 
 
 

 
 
Now, using Eqn. (4.5) into Eqn. (4.4), we get 
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Finally, substituting 
U
faakp ff 22 ==  into            

Eqn. (4.6), we get, 
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Particular Cases - If we take 0=f , then the problem 
reduces to that considered by Dutta (2001). In this case, 
by putting 0=f  into the equations (3.8) and (4.4), they 
reduce to the equations (3.9) and (4.5), which are similar 
to the expressions of mountain drag and energy flux as 
obtained by Dutta (2001) for the relevant problem. 
 

5.  The expressions of mountain drag, momentum 
and energy flux obtained in integral form are given by 
equations (3.5), (3.6) and (4.3) respectively. Further, they 
are expressed in terms of ( )fpR , drag and flux for non-
rotating atmosphere as given in equations (3.10), (3.12) 
and (4.7) respectively. ( )fpR  has been evaluated 
numerically for different wind speeds U  as shown in  
Fig. 1.  
 

We observe that as the mean wind U  decreases the 
magnitude of mountain drag, momentum fluxes and 
energy flux decrease from their value at 0=f  respectively. 

Also, for a quite low value of U 1ms5.2 −≈ , the 
magnitude of drag and both the fluxes become less than 
one-third of its value at 0=f , while for U 1ms0.6 −≈ , the  

 
 
 
 
 
 
 
 
 

Mean wind U(ms-1) 
 

Fig. 1. Variation of R(pf) with U 
 
 
magnitude of drag and both the fluxes become half of its 
value at 0=f . At very high values of U  the contribution 
of f  become very small. In turn flow becomes nearly 
geostrophic. 
  

Further, we can elaborate our studies to see that as 
latitude increases (i.e., f  increases) or width of the 
mountain ‘a’ increases, the magnitude of drag and both 
the fluxes decrease from its value at 0=f  and become 
very small in magnitude. In turn, flow becomes nearly 
geostrophic. Equations (3.9) and (4.6) show that drag and 
both the fluxes are dependent on the half width of the bell 
shaped portion of western ghats in case of stratified 
rotating atmosphere. This is not true in case of non-
rotating atmosphere as shown by equations (3.8) and (4.5). 
 The mountain drag and energy flux have been computed 
by using Radiosonde data as used by Dutta (2001) and 
these computed drag and flux are compared with Dutta 
(2001) results, which is given in Table 1. 
 

From Table 1, by comparing the results between 
stratified rotating atmosphere and stratified non-rotating 
atmosphere, it has been noticed that contribution             
of   coriolis  force  f   is  important and cannot be ignored. 
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TABLE 2 
 

                   Results without plateau part Results with plateau part 
Date Time (UTC) U N F E F E 

04 Jan '59 1200 12.3 0.60 3297246 40556126 2320705 28544671 

21 May '59 1200 13.7 0.61 3769951 51648329 2725914 37345022 

06 Dec '60 1200 12.3 0.61 3380237 41576915 2379117 29263139 

14 Dec '60 0000 06.7 0.61 1765222 11826987 1048232 7023154 

26 Dec '60 0000 09.6 0.61 2585289 24818774 1702887 16347715 

06 May '65 0000 12.8 0.61 3603408 46123622 2561961 32793101 

 
 
 
 

 
It is also found that the plateau part of the western 

ghats contributes towards the generation of the mountain 
drag, momentum flux and energy flux, which is absent in 
the case of non-rotating atmosphere as shown by Dutta 
(2001). Results for without plateau and with plateau for 
stratified atmosphere are given in Table 2. 
 

In the Table 2 the units of  U, N, F, E, Ff=0 and Ef=0 
are  ms-1,  s-1, Nm-2 and Wm-2 respectively. 
 

From Table 2, one can conclude that plateau part of 
the western ghats is a good contributor for generation of 
the mountain drag, momentum flux and energy flux. It is 
due to the rotation of the earth, which produces an 
additional drag on the plateau. 
 

Further, equations (3.10), (3.12) and (4.7) show the 
following equality  
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which implies that variation of drag and both the 

fluxes in stratified rotating atmosphere and drag and 
fluxes in non-rotating atmosphere are in same ratio.    
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VARIATION OF TEMPERATURE, WIND AND 
MOISTURE OVER NORTH AND NORTH EAST 
INDIA DURING GEWEX 1998 
 

1. To understand and study the phenomenon of 
Global Energy and Water Cycle, an Experiment 
(GEWEX) was launched in 1996 as a part of World 
Climate and Research Programme of WMO. During its 
first phase (1996 – 2000) the scientist community in 
Japan conducted an experiment called GAME (GEWEX 
Asian Monsoon Experiment) during April to September 

in 1998 and as many as 10 countries including India have 
taken part. Fig. 1 shows the countries participated and 
their periods in the GAME.  An extensive data set has 
thus been generated during this Intensive Operational 
Period (IOP).  Nine RS / RW stations, viz., (i) Patiala 
(PTL), (ii) New Delhi (DLH), (iii) Lucknow (LKN),         
(iv) Gorakhpur (GRK), (v) Ranchi (RNC), (vi) Patna 
(PTN), (vii) Kolkata (KOL), (viii) Mohanbari 
(MHN/DBH) and (ix) Guwahati (GWH)  spread close to  
the Indian monsoon trough region over the  northern and 
northeastern parts  were earmarked for taking four 
observations daily (viz., 0000, 0600, 1200 and 1800 
UTC)   during  the  period  of  15th  May  to  15th June and     


