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सार –  इस शोध पत्र म जलवाय के आकँड़ɉ की प्रवि× तɅ ु ृ यɉ  के  िवæ लेषण म समÍ चɅ ु य आनभिवक िविध िवयोजन ु

(EEMD) पÙधित का उपयोग करने का प्रè ताव है। वतर्मान पारà पिरक पÙधितयɉ की तलना म ु Ʌ EEMD सरल तीĭ और 
िवæ वसनीय पÙधित है। यह आंतिरक मोड प्रकायɟ म समयɅ -Įंखला आकँड़ɉ के िवयोजन Ùवारा उस समय तक कायर् करता ृ
है जब तक अविशç ट घटक प्राÜ त न हो जाए जो आकँड़ɉ की प्रविृ× त का प्रितिनिध× व करत ेहै। इस डेटासेट म जनवरी Ʌ
1998 से िदसà बर 2013 की अविध म िरकाडर् िकए गए उç णɅ किटबंधीय दिक्षण-पिæ चम िहदं महासागर (SWIO) बेिसन के 
िलए उç णकिटबंधीय वषार् माप िमशन (TRMM) से प्राÜ त िकए गए उपग्रह वषार् आकलन (SPE) सिà मिलत हɇ। SWIO 
बेिसन का  िवè तार  5  द.  से  35  द. अक्षांश और  30  पू.  से  70  पू.  देशांतर  तक  होता  है और  इसमɅ  कोमरोस, 
मेडागाè कर, मोिरिशश और िरयूिनयन Ùवीप जैसे कछ छोटे िवकिसत राÏ यɉु  के Ùवीप  (SIDS) और अफ्रीका का पिæ चमी 
तट का भाग शािमल है। ग्रीç मऋत और ु SPE आकँड़ɉ के वािषर्क समय Įंखलाओ ंके ृ EEMD  िवæ लेषण िकए गए। इस 
अÚ ययन  से  प्राÜ त  पिरणामɉ  को  आंतिरक  मोड  प्रकायɟ  (OMFS)  और  प्रवि× तृ यɉ  के  अनǾप  प्रè तु ुत  िकया  गया  है।           
इस िवæ लेषण से यह पता चला है िक ग्रीç मकाल म वषार् की मात्रा म विÙध देखी गई है जबिक शीतकाल म Ʌ Ʌ Ʌृ 1998 से 
2004 तक 0.0022 िम.मी./घं./वषर् की आरिà भक विÙध और वहां से आगे ृ 2013 तक 0.00052 िम.मी./घ/वषर् की कमी 
देखी गई।  

 
ABSTRACT. In this paper, we propose the use of the Ensemble Empirical Mode Decomposition (EEMD) method 

in the analysis of trends in climate data. As compared to existing traditional methods, EEMD is simple, fast and reliable. 
It works by decomposing the time-series data into intrinsic mode functions until a residual component is obtained which 
represents the trend in the data. The dataset considered consists of satellite precipitation estimates (SPE) obtained from 
the Tropical Rainfall Measuring Mission (TRMM) for the tropical South-West Indian Ocean (SWIO) basin recorded 
during the periods January 1998 to December 2013. The SWIO basin spans from the latitudes 5 S to 35 S and the 
longitudes 30 E to 70 E and comprises of part of the east coast of Africa and some small island developing states 
(SIDS) such as Comoros, Madagascar, Mauritius and Reunion Island. The EEMD analysis is carried out for summer, 
winter and yearly time series of the SPE data. The results from the study are presented in terms of intrinsic mode 
functions (IMFs) and the trends. The analysis reveals that in summer, there is a tendency to have an increase in the 
amount of rainfall, whereas in winter, from 1998 to 2004 there has been an initial increase of 0.0022 mm/hr/year and 
from there onwards till 2013 a decrease of 0.00052 mm/hr/year was noted.  

 
Key words  –  Precipitation, Trend analysis, Ensemble Empirical Mode Decomposition (EEMD), Intrinsic Mode 

Function (IMF), South West Indian Ocean (SWIO) basin. 
  
 
 

 

1.  Introduction 
 
 In the study of global, regional as well as local 
climate change impact scenarios, it is important to 

understand the trends in the climatic variables. In 
literature, most of the related works have relied on the 
least squares best fit lines (Lunagaria et al., 2012; Tong   
et al., 2014)   method   while  few  others  have  employed  
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Fig. 1. The tropical SWIO study area 

 
 
statistical models (von Storch & Zwiers, 1999). The 
traditional stochastic methods include the probability 
distribution method (give amplitude information only), 
auto- and cross-correlation function (show time-
independence only) and the power-density spectrum 
(contains frequency-dependent information only) 
(Goodwin, 2008). However, climate data are complex, 
non-linear and non-stationary as they are constantly 
changing with position and time. Analysis tools for non-
linear time series normally employ Fourier transforms. 
However, owing to the global nature of the transforms, the 
final results may lead to inconclusive interpretations 
(Mak, 1995). Even with the use of wavelet analysis, which 
was developed especially to deal with non-stationary time-
series data, confusing and contradicting results were 
obtained when applied to climate (Oh et al., 2003). 
Therefore, an appropriate non-stationary time-series data 
analysis technique must be employed.  
 
 Huang et al. (1998) developed the Empirical Mode 
Decomposition (EMD) method as an effective tool for 
analyzing the non-stationary properties of time series data. 
The method allows the breaking down of a signal into 
several intrinsic mode functions (IMFs) with different 
oscillation periods and a residual component without 
leaving the time domain. The process is useful for 
analyzing natural signals, especially for nonlinear and 
non-stationary signals, compared to Fourier and Wavelet 
Transforms. EMD has successfully been applied in a 
number of scientific and engineering fields and even in 
finance. In the meteorological field for instance, Molla      
et al. (2006) used EMD to analyze the trend in rainfall 
data collected from Agricultural experimental farms in 
Jharkhand, India from 1989 to 2004. Coughlin & Tung 
(2005) applied the method on data provided by the 
National Center for the Environmental Prediction to 
demonstrate that dynamical variables in the zonally 
averaged troposphere and lower stratosphere contain only 

five oscillation modes and a trend. In spite of the many 
advantages of the EMD method, it has the inconvenient 
feature of mode mixing between the IMFs (Sharma & 
Kaur, 2014). Hence, the variation of a given frequency 
may split across two IMFs which is a problem when 
investigating the physical significances of the latter (Wu 
et al., 2014). Recently, Wu & Huang (2009) proposed the 
Ensemble Empirical Mode Decomposition (EEMD), a 
noise-assisted method, to overcome the problem of mode 
mixing. Here, noise is superimposed with the time-series 
in order to bring in the ordering of local maxima and 
minima which are the basis of finding IMFs in EMD. It 
should be noted that the IMFs and residual obtained using 
EEMD have more physical meaning than their 
counterparts in EMD (Wu & Huang, 2009; Sharma & 
Kaur, 2014; Wu et al., 2014).  
 
 In this study, an attempt is made to employ EEMD in 
the analysis of trends in time-series data for satellite 
precipitation estimates (SPE). Rainfall is most of the times 
the major source of freshwater. Nowadays, due to the 
current prevailing climate change, it has been observed 
that in some areas of the globe there are severe droughts 
over long periods of time and on the other hand there is 
serious flooding, leading in both cases to a scarcity in 
freshwater supply (MMS, 2014; MFR, 2014). The reason 
is that in the first scenario there will be a significant 
depletion of freshwater whereas in the second scenario the 
latter will get contaminated. In that regard, it is highly 
imperative to monitor and predict the trends in 
precipitation data in those affected regions. SPE data 
measured over the tropical South-West Indian-Ocean 
(SWIO) region during the period January 1998 to 
December 2013 are used. They are decomposed into 
several IMFs with different characteristic scales and a 
residue using EEMD and their trends and physical 
properties are analyzed. To the best of the authors’ 
knowledge, this study is the first to use such an approach 
in the tropical SWIO basin.  

 
2. Data and methodology 
 

2.1. Study area and data description 
 
 The study area is a region within the tropical SWIO 
basin which spans from the latitudes 5 S to 35 S and the 
longitudes 30 E to 70 E (Fig. 1). It comprises of a part 
of the east coast of Africa (Mozambique, Tanzania and 
South Africa) and some small island developing states 
(SIDS) such as Comoros, Madagascar, Mauritius, Mayotte 
and Reunion Island.  The climate in this part of the world 
varies between tropical and subtropical with a cyclonic 
season of about 5 months starting from December to 
May.  The mean annual rainfall is about 0.22 mm/hr. The 
wettest months are February and March. The driest month 
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is October. Usually, most of the rainfall occurs in summer 
months. The air temperature lies between 12 ºC to 38 ºC. 
The sea surface temperature can reach up to 28 ºC. The 
SWIO region has two seasons: a warm humid summer 
extending from November to April and a relatively less 
humid winter from May to October (MFR, 2014; MMS, 
2014). 
 
 Remotely sensed TRMM data used in the present 
study for the SWIO region are available at the Goddard 
Space Flight Center from the North America’s Space 
Agency (National Aeronautics and Space Administration - 
NASA). The monthly precipitation data (3B43 Products) 
spans from January 1998 to December 2013 and have a 
spatial resolution of 0.25.   
 
 It is worthwhile mentioning that precipitation 
products from TRMM are being used as an alternative 
rainfall measurement data around the world. The 
precipitation radar on the satellite covers a global scale 
and has accurate calibration, downward viewing 
geometry, and lack of beam blockage (Yang & Nesbitt, 
2014). However, these measurements are only estimates 
and are subject to uncertainties. Previous studies have 
tackled this issue by comparing TRMM-based 
precipitation to rain gauge measurements in different case 
studies (Yang and Nesbitt, 2014; Kneis et al., 2014; 
Haque et al., 2013; Huffman et al., 2006). For instance, 
Yang & Nesbitt (2014) showed that moderate and light 
rain events are likely to be missed by TRMM radar but 
these do not have significant influence on large-scale 
statistics of stratiform rain amount and convection. 
However, over the Mahanadi River in India, it has been 
revealed that even intense rainfall events are not registered 
by the satellite-based precipitation estimates (Kneis et al., 
2014). Comparing high and low altitude stations data with 
TRMM, Haque et al. (2013) revealed better correlation of 
rain with low altitude stations, with the sensor failing to 
detect high rainfall intensity close to mountains. In 
general, the validation studies have shown that TRMM 
data compares fairly well with gage measurements on a 
monthly time scale compared to finer time scales (Haque 
et al., 2013; Huffman et al., 2006).  
 
 2.2. The EEMD method 
 
 As mentioned in the introduction, the EEMD method 
is an improvement of the original EMD method to 
overcome the problem of mode mixing. EEMD uses white 
noise along with an ensemble of EMD runs to decompose 
a time series (Wu & Huang, 2009). The paragraphs which 
follow briefly describe the EMD and EEMD algorithms. 
 
 EMD basically detaches non-linear oscillatory 
patterns of higher frequencies from those of lower 

frequencies in the data. The method is straightforward. 
For a given time series signal EMD represents the 

signal in a set of basis functions (simpler signals), which 
are termed as intrinsic mode functions (IMF), using local 
temporal and structural characteristics of the data.  An 
IMF should satisfy the following properties: (1) zero 
mean; and (2) the number of local extrema equals the 
number of zero crossings ± 1 (Huang et al., 1998; 
Coughlin & Tung, 2005; Molla et al., 2006).  

),(tx

 
 The IMFs are obtained by the following procedure: 
 
 Connect the maxima in )(tx  using smooth lines and 

denote this curve as upper envelope, )(tEu . Similarly, 

connect the maxima in )(tx  using smooth lines and 

denote this curve as lower envelope, )(tEl .  

 
 Compute the mean of these envelopes:  
 

  )()(
2

1
)( tEtEtm lu                                             (1) 

 
 It should be noted that m(t), at any temporal location, 
is nearly equal to the lowest frequency component in the 
data. 
  
 Subtract the mean of the envelopes from )(tx  and 

store the result in )(1 th . That is 
 
 )()()(1 tmtxth                                                     (2) 
 
 This results into isolating the higher frequency 
components from the lower frequency components in the 
original signal. Ideally  is the first IMF. )(1 th
 

 If )(1 th  does not satisfy the properties of an IMF, 

then it is treated as a “new” signal and is re-entered in the 
process of computing the IMFs. This iteration, known as 
the sifting process, is repeated until the IMF is obtained. 
 

 Repeat the process until all IMFs, ),(thk are 

obtained. At this final stage (say after n iterations), a 
constant or monotonic function )(trn  remains which is 

termed as the residual. It represents any trend within the 
origin

onstructed by summing all IMFs and the residual 
sing 

                                              (3) 

al series.   
 

 It is intuitive to observe that the original signal can 
be rec
u
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Fig. 2.  Yearly mean mapping SPE (mm/hour) over the SWIO basin 
for the period January 1998 to December 2013 

 
 
 The IMF components and the residual have physical 
significance.  
 
 The EEMD algorithm for the time series signal 

can be described as follows (Wu & Huang, 2009): ),(tx

 
 Generate ),()  where )(twi                  

(i = 1,…, N) are different realizations of white Gaussian 
noise. 

()( twtxtx ii 

 
 Each )(txi (i = 1,…, N) is fully decomposed using 

the EMD algorithm described above to obtain their IMFs 

[ )(thi
k ], where k = 1,…, n. 

 

 Assign )(thk  as the k-th mode of )(tx , which is 

obtained as the average of the corresponding IMFs using  
 

 



N

i

i
kk th

N
th

1

)(
1

)(                                                   (4)  

 
 It should also be mentioned that the white noise 
introduced in EEMD helps in the separation of different 
timescales in noisy data, but has no involvement in the 
final IMFs (Wu et al., 2014). The added noise cancels out 
in the ensemble average. The EEMD method is very 
effective in extracting signals contained in the data, and 
represents a major enhancement of the EMD method (Wu 
& Huang, 2009; Sharma & Kaur, 2014; Wu et al., 2014). 
 
3.  Results and discussion 
 
 In this section the SPE of the SWIO basin obtained 
for the period January 1998 to December 2013 are subject 
to trend analysis using EEMD. They are initially 

 

 
 

Fig. 3. IMFs and Residual for time-series SPE data (Signal) using 
the EEMD method 

 
 

 

 160 along the longitude axis and 128 along the latitude 
xis. The time-series representations of the SPE for the 

PE 

is
a
study region are obtained by averaging the dataset values 
over the whole grid for each month.  
 
 3.1.  EEMD analysis of yearly S
 
 map which 
emonstrates the mean amount of precipitation estimates 
n m

Fig. 2 shows the resulting mean SPE 
d
(i m/hour) that has accumulated over the SWIO basin 
between January 1998 and December 2013.  
 
 ite variable, 

regular and depends on geographical location. A high 
mou

It can be observed that the data is qu
ir
a nt of precipitation is estimated towards the North-
Eastern part of the study area (close to the Indian Ocean 
equatorial belt) and also along the east coast of 
Madagascar.  It is a major point of concern to conclude 
that over these particular years there has been a drastic fall 
in the mean SPE. For instance, Mauritius and Reunion 
Islands lie in the dark-blue environment, corresponding to 
the lowest value on the SPE scale.  

processed to generate mean mapping of the data over the 
study region. The grid size of the SPE data for each month  
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Fig. 4.  Time series of mean SPE data (mm/hour) over SWIO basin 

and its corresponding EEMD trend 
 
 
 

 
 

 
 

Figs. 5(a&b).  Seasonal mapping of mean SPE (mm/hour) over the 
SWIO basin for the period January 1998 to 

 
 

December 2013 (a) Summer Season (b) Winter 
Season 

 

Fig. 3 displays the resulting time-series of the SPE 
ata and its complete decomposition by EEMD in terms  

of  IMFs  and a residual. The minimum value of this time- 

IMFs 1 3 4 5 6 

 
d

TABLE 1 
 

Period statistics of yearly mean SPE IMFs 
 

2 

No. of local 
maxima 

57 14 7 3 1 1 

Mean period 
0.2798 1.0705 1.9583 4.7500 

(year) 
- - 

 
 

 2
 

Period statistics of seasonal mean SPE IMFs 

IMFs  1 2 3 

TABLE  

 

Season

Summer 6 2 1 
No. of local maxima 

Winter 4 2 1 

- Summer 2.2 5.0 
Mean period (year) 

Winter 3.0 11.0 - 

 

TAB

Statistical data for seasonal time-series of mean SPEs 
 

 Min Mean SD 

 
LE 3 
 

M x a

r 0.1341 0.1723 0.1545 0.0Summe 096 

Winter 0 0. 0. 0..0654 0972 0788 0091 

 

 
 

eries is 0.0320 mm/hour, maximum is 0.2923 mm/hour, 
nd mean is 0.1166 mm/hour with a standard deviation of 
.0617 mm/hour. It can also be observed that the EEMD 

s
a
0
decomposition separates the time series into six IMFs and 
a trend. Relative to the signal data, the periods of the IMFs 
increase while their amplitudes decrease after each 
decomposition until the residual is obtained.  
 
 In order to analyze the IMFs, their mean periods m  

are computed using  
   

 


L

m L 1

1 
l

l
1

' ,                                                   (5) 

 
whe is the  total number of maxima and l're, L    is 

the 
e

sample length between lth and (l+1)th maxima (Molla 
. local
e ms

od 
ould not be determined from equation (5). The IMFs are 

capable  of  identifying  the  expected  structure within the  

) 

(b) 

t al., 2011) Table 1 gives the total number of  
maxima as w ll as the mean average periods (in ter  of 
number of years) of the IMFs of the yearly SPE data. 
 
 As can be seen in Table 1, IMF 5 and IMF 6 have 
only one local maximum and therefore the mean peri
c

(a
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Figs. 6(a&b).  IMFs and Residuals for seasonal time-series of mean SPE 

data using the EEMD method. (a) Summer season and  
(b) Winter season 

SPE series. 
ifferent periods in the IMFs can be related to Madden-
lian Oscillation and El Niño–Southern Oscillation 
NSO) (Washington & Preston, 2006; Yeh et al., 2009). 

 
 
 

The climatic phenomena associated with the 
d
Ju
(E
However, discussions on the latter are beyond the scope of 
this work.  
 
 

e wettest periods lie in December to January 
onths (summer season), while the driest periods lie in 

the months of June to July (winter season). 

In Fig. 4, both the time-series representation of the 
SPE data and the resulting EEMD trend (residual) are 
depicted. Th
m

 
 

Fig. 7.  Seasonal time-series for mean SPE over the SWIO region 
and their corresponding EEMD residuals 

 
 

 Th was noted in 
ecember 1998 with a value of 0.2935 mm/hour while the 
west mean SPE was in July 1999 with a value of 0.0320 
m/hour. It can also be seen that, generally, the trend line 

hows an average decrease of 0.0012 mm/hour/year in the 
ean

timates) that has 
ccumulated over the SWIO basin in both summer 

September) 
easons for the period January 1998 to December 2013.  It 
n b

 

 
 

e highest level of mean SPE 
D
lo
m
s
m  SPE from January 1998 to December 2006 and a 
slight increase between January 2007 to December 2013 
at a rate of 3.8  10-4 mm/hour/year .  
 
 3.2.  EEMD analysis of seasonal SPE 
 
 Figs. 5(a&b) displays the resulting mean SPE maps 
(mean amount of precipitation es
a
(October to March) and winter (April to 
s
ca e deduced that the mean SPE in summer is higher in 
the eastern part of Africa, central and northern parts of 
Madagascar and north-east of SWIO basin. During winter 
the east coast of Madagascar as well as north-east region 
of SWIO recorded the highest SPE, whereas over Africa, 
the western part of Madagascar as well as the eastern 
region of SWIO recorded the lowest amount of mean SPE.  

 
 

umar (2004), the south-westerly and equatorial westerly 

(b) Winter 

The quasi-permanent feature of the precipitation belt 
of the north-eastern part of SWIO in both summer and 
winter periods can be explained by the flow dynamics 
nvolved in the region. As explained by Kripalani & i

K
flows as well as the north-easterly winds from the Bay of 
Bengal all converge in this region. The resulting time-
series graphs as well as the corresponding IMFs and 
residuals for both summer and winter mean SPEs are 
presented in Figs. 6(a&b). 

(a) Summer 
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 Table 2 shows the period statistics of the seasonal 
mean SPE IMFs as computed using equation (5). Table 3 
displays the statistical data computed for the summer and 
winter time-series mean SPEs. The low standard 
deviations (SD) obtained for both data suggest that there 

as h not been significant change over the years 1998 to 
2013 in the amount of rainfall.  
 
  

time-series data suggests 
at the summer season is becoming relatively wetter. 
rom

                

t

       

 ve M ) 1

In Fig. 7, both the time-series representation of the 
SPE data for summer and winter seasons and their 
resulting EEMD trends (residuals) are depicted. The 
positive trend in summer SPE 
th
F  1998 to 2013, during the summer periods, the mean 
monthly SPE varied from 0.1341 mm/hr, occurring in 
1999 to 0.1723 mm/hr, corresponding to the year 2006. 
The trendline of the mean variations of the SPE in 
summer over the 15 years gave a gradient of  
0.0012 mm/hr/year. This can be explained by the fact that 
there have been more and more cyclones of high 
intensities visiting the region as well as more frequent 
heavy downpours due to climate change (MMS, 2014; 
SARUA, 2014). However, during the winter periods, he 
mean monthly SPE varied from 0.0654 mm/hr, occurring 
in 2013 to 0.0972 mm/hr, corresponding to the year 2012. 
Interestingly, the trendline of the mean SPE in winter over 
the 15 years indicated that from 1998 to 2004 the rate of 
change in the monthly rainfall was 0.0022 mm/hr/year 
whereas this value dropped significantly to  
-0.00052 mm/hr/year over the period 2009 to 2013. 
Between 2004 and 2009 the SPE has been approximately 
constant. The likely explanation for this is that the 
temperatures in winters have increased slightly over the 
region (as obser d by M S (2014 and MFR (20 4). 
Overall, it can be observed that summer is much wetter 
than winter over the 15 years considered in this study. 
 
4.  Conclusion 
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In this work the EEMD method allows the 
decomposition of the time-series SPE data for the SW
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Therefore, it is a very useful tool or studying trends in 
climate data. The authors believe that such analysis will 
be helpful to the government and any organization in 
making an informed decision with regard to water 
resource management in the SWIO region. 
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