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सार – इस शोध  पत्र  म  वाè तɅ िवक भ मॉडल  के  è तू रीय  इलािèटक अÙधर्  अंतराल  म  िसथेंिटक Ʌ या  सैÙधांितक 

भकंपलेख का आकलन करने के िलए ू eigen इंजन फंक् शन एक्सपशनɅ  पÙधित का उपयोग िकया गया। सरल िवè थापन 
İोत मॉडल पर िवचार िकया गया। िवè थापन के्षत्र के अनप्रè थु  (एस एच) अथवा रेिडयल और उÙधर्वाधर (पी एस वी) 
अवयवɉ की समक्ष पÙधितयɉ के Ǿप म आकलन िकया गया और सही तथा अंकीय तकनीकɉ दोनो का उपयोगɅ  करत ेहए ु
तलना की गई। इस अघ् यु यन म प्रयक् तɅ ु  की गई पÙधितयɉ म ऑडर्र Ʌ 4 के Ǿंगे-कटटा पÙधित का ु प्रयोग करत ेहए अंकीय ु
आकलनɉ के साथ-साथ प्रितिबबं ट्रांसिमशन सहगणांक का ु प्रयोग कर प्रोपेगेटर मैिट्रक् स अप्रोच Ùवारा िकया गया सटीक 
मã यांू कन  शािमल  है।  इस  अÚ ययन  की  िवशेषता  समǾपी  और/अथवा  असमǾपी  è तरɉ  के  साथ  भ  मॉडलɉ  के  िलए ू
अिधकतम  िवè थापन  का  आकलन  करना  है।  अिधप्रवाह  वाली  त्रिटयɉु   पर  िनयंत्रण  करने  के  िलए  इस  अÚ ययन  म Ʌ
सामाÛ यीकत तकनीक का प्रयोग  िकया गया  है। इस अÚ यृ यन म प्रितकल पनरावत तकनीक Ùवारा भɅ ू ु ूृ -संरचना अथवा 
İोत मॉडल के बारे म जानकारी से लाभ िमलता है। Ʌ  

 
ABSTRACT. The method of eigen function expansion has been used in the present study to compute synthetic or 

theoretical seismogram in layered elastic half-space of real earth model. Simple dislocation source model has been 
considered. The transverse (SH) or radial and vertical (P-SV) components of displacement field have been computed as 
summed modes and compared by using both exact and numerical techniques. The methods used in the study, include 
exact evaluation by propagator matrix approach using Reflection-Transmission coefficients as well as numerical 
computations using Runge-Kutta method of order 4. The specialty of the present study is to evaluate approximate 
displacement field for the earth models with homogeneous and / or inhomogeneous layers. The normalization technique 
has been used in the study to control the overflow errors. The study has an advantage to get an idea of earth structure or 
source model by an inverse iterative technique. 
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1.  Introduction 
 

The structure of the earth’s crust as determined from 
seismological studies exhibits a layered pattern. Thus 
earth can be modeled as a system of N parallel and 
vertically stratified media with the elastic parameters in 
each layer are either constant or some function of depth. 
Ingate et al. (1983) proposed model for calculation of 
theoretical or synthetic SH-seismogram in a laterally 
homogeneous layered medium for the buried source 
model, based on Harkrider (1964) and the extension of the 
reflectivity method of Kind (1978, 1979). The vertical 
inhomogeneity in the earth’s parameters can also be 
modeled by introducing additional layers with constant 
elastic parameters, whose values are the average of the 
vertical inhomogeneity. Thus it is very hard to suggest any 

general method to compute synthetic seismogram in a 
vertically inhomogeneous medium, like wave number 
integration or branch line integration as in the case of 
homogeneous medium, following Herrmann (1979). The 
wave number integration method [Apsel and Luco (1983)] 
body force equivalent technique [De and Roy (2012), De 
(2014)] and reflectivity method [Kind (1978)] are suitable 
for homogeneous elastic earth models. Apsel and Luco’s 
(1983) algorithm uses reflection transmission matrix 
suggested by Kennett and Kerry (1979) and Kennett 
(1983) and avoids numerical instability that arises due to 
growing exponential terms. Takeuchi and Saito’s (1972) 
numerical scheme avoids the necessity of sub-layering in 
case of vertically inhomogeneous medium and the use of 
shooting method for the eigen value problem gives a 
precise computational scheme. The classical propagator 
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matrix method [Haskell (1953)] was improved by Dunkin 
(1965) through compound matrix to avoid round-off error 
and growing exponential terms. Zhang et al. (2003) 
proposed the General Reflection and Transmission 
Method (GRTM) to compute synthetic seismogram. Das 
and Mitra (1998) computed the Love wave dispersion in 
vertically inhomogeneous media. Touhei (2003) presented 
the formulation and numerical examples of the analysis of 
scattering waves in an elastic layered half space based on 
the complete eigenfunction expansion form of Green’s 
function [Touhei (2002)]. The spectral representation of 
the Love wave operator was studied by Kazi (1978).           
He obtained the exact form of the eigen values both for a 
finite layer and for the lowest layer extending to infinity. 
Harkrider (1970) presented the phase and amplitude 
spectra of Rayleigh and Love waves for continental and 
oceanic models with tabulated values of spectra of first 
three Rayleigh modes and first four Love modes for point 
sources at selected depths. Yang et al. (2010) presented a 
new derivation of the explicit expression of displacement 
in response to a point dislocation source in terms of the 
summation of the Earth’s normal modes.  
 

However in the present study, we have computed the 
eigen function and eigen solution in case of earth models 
with homogeneous layers or / and with inhomogeneous 
layer(s) The approximate displacement field associated 
with an assumed source model has been presented in the 
study at large distance as sum of normal modes for 
positive real eigen values. The computational techniques 
of the displacement-stress vector in the present study 
include, exact evaluation through propagator matrix 
approach with Reflection-Transmission coefficients 
[Haskell (1953); Harkrider (1964); Chen (1993)] as well 
as numerical computations [Takeuchi and Saito (1972)] 
using Runge-Kutta method of order 4. The advantage of 
the method of complete eigenfunction expansion over the 
Green’s function approach, for the analysis, is that the 
formulation itself becomes independent of the number of 
layers and the scattering waves can be decomposed into 
the modes for the spectra in the layered medium. The 
specialty of the present study is to evaluate approximate 
displacement field for the layered homogeneous-
inhomogeneous layered earth models as sum of           
eigen functions with either of the above mentioned exact 
and numerical approaches. Asymptotic expansion of 
Bessel function has been used to compute synthetic 
seismograms. The simple software programs have been 
used to compute the results are shown graphically. It is 
observed that the energy integrals associated with the 
surface waves - Love and Rayleigh, are useful in 
computation of synthetic seismogram at large distance 
from the source [Florsch et al. (1991)]. The present study 
can be extended to estimate ground motion from an 
earthquake. 

2.   Displacement field in terms of the eigen function 
expansion  
 
In a multi-layered half space the eigen function 

equation satisfied by the Fourier-Bessel transformed 
displacement field [U(,k), W(,k), V(,k)] n the 
cylindrical co-ordinate system  (r. ф, z) is singular in 
nature, where the Fourier-Bessel transform of a function  
g (r) is defined as : 

 

0

0

( ) ( ) ( )G s g r J sr rdr


                                    (1) 

 
and the corresponding inverse transform as 
 

0

0

( ) ( ) ( )g r G s J sr sds


                                    (2) 

 
From the theory of the partial differential equation, it 

follows that the spectrum of surface wave dispersion 
equation consists of a finite number of real discrete          
eigen-spectrums ( , , )nU k z and ( , , )nV k z  & continuous 

eigen spectrum, also called improper eigen spectrum, 
( , )z  due to branch cut for Rayleigh wave (Eqn. 4) and 

for Love wave discrete and continuous eigen spectrum are 
respectively ( , , )W k zn  and ( , )z  .   represents the 

integration variable in continuous eigen displacement 
instead of 2 . Orthogonal property holds between the 
discrete eigen displacement ( , ,nU k )z  and the 

continuous eigen displacement ( , z)  and among 

themselves [Eqns. (1.45) & (1.46) of Andrianova                 
et al. (1967)].  
 

Thus, 
 

0
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( , ) 0
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z dz

   

 


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
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tz z z z       

  


 

 



    

                                                                                (3) 

( , )z  dz

 
where,  is the complex conjugate of   and the 

symbol  <  ,  > denotes scalar product. 
 
Similar type of relations between discrete and 

continuous eigen spectrum, ( , , )nW k z  and ( , )z  for 

Love wave can be deduced.  
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The discrete and continuous orthogonal eigen 
spectrum form a complete system while individually each 
one is not a complete set. The completeness property 
implies that the transformed radial and vertical 
displacement field for the Rayleigh wave                        
[i.e., ( , , )U k z and ( , , )V k z ] and also for the Love wave 

[i.e., ( , ,W k )z ] can be expressed in terms of the 

complete set of eigen spectrum. Thus considering only the 
Rayleigh wave displacement,  

 
we have  
 

( , , ) ( ) ( ) ( , )n n
n

U k z c U z c z d    


    

                                                      (4) 
 
where,  has been written instead of ( )nU z

( , , )nU k z and   represents the integration variable in 

continuous eigen displacement instead of 2 . 
 

 Now operating both sides of the above equation by 
the operator LR [(Roy (2013)], defined as  
 

LR 2d d dtA kB kB k C
dz dz dz

     
 

                 (5) 

 

where,  denotes the transpose of the matrix B and
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                                   (6) 

 
Now, using the results 
 

2( ) ( ) ( , , )LU z U z F k z      

 
2( ) ( )n nLU z U z   

 
( , ) ( , )L z z                                                 (7)                                         

 

the following relations are obtained 
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z

 
 

2( )( ) ( , , ), ( , )c F k z                            (8) 

 
where, ( , , )F k z is the Fourier-Bessel transformed 

force field. 

Hence Eqn. (4) becomes 
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(9) 
 
Similarly for ( , , )V k z . The corresponding 

transformed displacement field associated with the Love 
wave which is horizontal and having only the cross-radial 
component, can be expressed as 

 

2 2

2
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( , , ), ( , )
( , )
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n n
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


 
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 


  
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






      

  (10) 
 
The time domain displacement field can be obtained 

on taking inverse Fourier-Bessel transform of the above 
equations.  
 

The existence of continuous and discrete spectrum is 
supported by the basic property of the characteristic 
equation in the theory of partial differential equation.             
But the disturbance corresponding to a continuous 
spectrum decreases in strength at infinity as  
[Andrianova et al. (1967)]. Now omitting the continuous 
eigen spectrum part and evaluating the residue                       
term corresponding to the poles at the wave number              
k = kn [Eqn. (11.56) of Roy (2013)] in the first                    
quadrant of the complex k-plane satisfying the                 
radiation condition, the displacement field associated               
with the Love wave can be expressed Roy (2013);               
Aki and Richards (2002) at large distance for a point 
source as : 

3/2r

 

 

(1)

( cos sin ) ( , , )

8

2
( , , ) exp / 4

y x n nlove

n L L

n n n
n

i f f W k hi tu e
cU I
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  
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





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                    (11) 
 
 
where, the source ( , , ) exp ( )x y zf f f i t is situated at 

a depth h below the surface, 


 is the unit vector in     

direction and ( , , )n nW k z  is the eigen function 

corresponding to the nth mode. 
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The parameters used in the last equation are         
defined as : 

 
c = Phase velocity = / k  
 

LU = Group velocity = 
k




=
(2)

(1)
L

L

I

cI
 

(1) 2

0

1
( )[ ( , , )]
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(2) 2

0

1
( )[ ( , , )]

2L nI z W k z dz 


                                 (12) 

 
where, ( )z , ( )z and ( )z are respectively the 

depth dependent density and elastic parameters of the 
medium. 

 
The similar expression for the Rayleigh wave can be 

expressed as 
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 where, 
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    (14)   

The expressions as obtained in equations (11) & (13) 
are similar to the Eqns. (7.143) and (7.144) of Aki and 
Richard (2002) and also Eqns. (251) and (252) of 
Takeuchi and Saito (1972). The results as mentioned 
above have been represented in brief for the purpose to 
develop our computational scheme of theoretical or 
synthetic seismogram. In the present study, displacement 
field has been computed as sum of normal modes and two 
mathematical approaches have been adopted to compute 
the displacement-stress vector. The first one is the exact 
evaluation through propagator matrix approach with 
Reflection-Transmission coefficients [Appendix A] and 
the second one is the numerical integration using Runge-
Kutta method (order 4) [Appendix B]   
 

The energy integrals or 

 as mentioned in equations (12) and (14) 

are very useful in the computation of Love or Rayleigh 
wave displacement field and can be considered as 
response of the medium. The lower value of the energy 
integral gives significant rise of amplitude of these waves 
on the surface [Florsch et al. (1991)]. The eigen 
displacement as appearing in the energy integrals is 
dependent on depth and becomes very small at deeper 
depth. Thus the infinite integrals can be truncated to a 
finite depth and usual numerical integration formula gives 
us the value of the energy integrals. The eigen 
displacements are computed by either or both of the 
methods as mentioned in Appendix A and B. 

)2,1(,)( jI j
L

)3,2,1(,)( jI j
R

 
3.   Discussions 

 
An efficient computational technique to evaluate the 

transient response of layered half-space or inhomogeneous 
media, in cylindrical polar coordinate system, has been 
presented in the study as sum of normal modes with the 
help of both numerical and exact approaches. The source 
models of the study are of simple dislocation. The eigen 
displacements in an inhomogeneous medium are usually 
computed numerically using Runge Kutta method of order 
4 and in exact approach the propagator matrix method is 
used. But the numerical method suffers from the defect of 
computational overflow error at high frequencies. To 
overcome the problem of numerical instability at high 
frequencies, the summation over ‘n’ in (11) and (13) is 
restricted to its lower finite value which guarantees the 
convergence of the series as the solutions (11) and (13) 
are mainly dominated by the fundamental and few higher 
modes (Figs. 2 & 9). The technique of normalization of 
eigen functions has been used in the study to reduce the 
numerical instability upto certain limit. The use of R/T 
(Reflection and Transmission) coefficients [Apsel and 
Luco (1983); Hisada (1994)] has intrinsically excluded the 
growth terms as seen in Haskell’s matrix  [Haskell (1953); 
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Fig. 1.   Comparison of normalized transverse (SH-Love) component 

of displacement field at an epicentral distance 33 km by the 
present method with that of recorded displacement  [Florsch 
et al. (1991)] due  to   the   earth    model  as   proposed   by 
of Heaton and Helmberger (1978). Curve (a&b) respectively 
represent computations through exact method using         
R/T coefficients and numerical technique using Runge-
Kutta method. Wave (c) represents the recorded 
displacement. All amplitudes are normalized to the source 
with scalar seismic moment. The maximum amplitude               
is 5.16 E-04 

 
 

 
 

 
Fig. 2.  The assembly of fundamental and first four modes of Love 

waves in the seismogram of Fig. 1 wave (a) 
 

 
 
 

 
 

Fig. 3.  Derivative of source time dependence [Apsel and Luco 
(1983)] 

 
Fig. 4.   Dispersion curves (fundamental and next three higher 

modes) for the disturbances due to Love wave in the 
Bouchon’s (1982) earth model with source in the half-space 

 

 
Fig. 5.   Eigen-Displacement curves of the fundamental and next two 

higher modes at a circular frequency 1.25 Hz for Love wave 
in the Bouchon’s (1982) earth  model  with source in the                    
half-space at a depth 36 km 

 
 

 
 
Watson (1970)] method. Thus, both the problems of 
overflow and underflow are over come in the present 
study. The novelty of our study is that our scheme can be 
used efficiently to the inhomogeneous media as well as 
inhomogeneous layer (s) inter-pressed between 
homogeneous layers by applying both the above 
mentioned mathematical techniques together - Matrix 
method for homogeneous layers and numerical solution 
using Runge-Kutta method (order 4) in case of 
inhomogeneous layers. 
 

In the present study the source layer has been 
divided into two consecutive sub-layers through the 
source where a stress discontinuity exists due to the source 
(Harkrider, 1964). We apply shooting method which is 
very much similar with that of bisection or root bracketing 
method in numerical analysis to evaluate the eigen values. 
The roots of secular equation (i.e., stress free boundary 
condition) are computed as wave numbers (k) for each 
given frequency ω. We compute the eigen functions on 
the surface by using layer matrix multiplication with          
R/T  coefficients  for  homogeneous  layers  of the layered  
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Figs. 6(a&b). Comparison of normalized Radial [Fig. 6(a)] and 
Vertical [Fig. 6(b)] displacement components on the 
surface of a one layer half-space model of Apsel and 
Luco (1983) due to a vertical strike-slip dislocation 
(Fig. 3) at an epicentral distance r and 45º from the 
strike. The displacement components have been 
computed as sum of normal modes with propagator 
matrix method as discussed in Section 2 

 
 
half-space media at the roots of the secular equation or 
solving a system of 2 (for SH-Love wave) or 4 (for PSV-
Rayleigh wave) differential equations by Runge Kutta 
method of order 4 in case of inhomogeneous layers. The 
above mentioned scheme begins with stress discontinuity 
at the source layer and propagates towards the free 
surface. The displacement and stress field are continuous 
at the interface of two layers in the layered half-space 
models of the study, except at the source. 

                    
         

Fig. 7.   Shear  wave    velocity (β)-depth   graph  for  a  modified  
three layered half-space earth model of Bouchon (1982) with 
inhomogeneous second and third layers and the source is in 
the half-space 

 

 
 

 
 

Fig. 8.    Comparison of Normalized transverse displacement (SH-
Love wave) at an epicentral distance 100 km due to a vertical 
strike slip dislocation (Fig. 3) for the (a) modified Bouchon’s 
(1982) three    layer   half-space    earth   model   (Fig. 7) and 
(b) Bouchon’s (1982) model  by modal summation 

 
 
 

 
The normalized transverse (SH-Love wave) surface 

displacement field due to an earth model proposed by 
Heaton and Helmberger (1978) to model November 4, 
1976 Brawley, California earthquake at an epicentral 
distance 33 km from the source has been presented by 
different methods in Fig. 1. A strike-slip   point   source 
which is situated at a depth 6.9 km below the earth’s 
surface has been considered on a vertical plane. The eigen 
displacement has been computed by exact method using 
R/T coefficients [Fig. 1(a)] and numerically using Runge-
Kutta method of order 4 [Fig. 1(b)]. The computed 
displacement fields [Figs. 1(a&b)] as obtained by the 
above methods are in agreement with the result of Florsch 
et al. (1991) and the recorded displacement [Fig. 1(c)] at 
the station, 33 km from the source. Fig. 2 represents the 
assembly of fundamental and first four modes of the 
seismogram in Fig. 1(a) and agrees with the result of Aki 
(1982, Fig. 4). 

(a) 

(b) 
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Fig. 9.   The assembly of fundamental and first four modes of Love 
waves in the seismogram of Fig. 8 wave (a). 

 
 
 

Layered - half space model of earth is the first step 
towards modeling of inhomogeneous earth. The 
inhomogenity can also be approximated, in a better way, 
by further layering of the layered media. But it increases 
the possibility of overflow error, even at low frequencies. 
The method involving R/T coefficients has its drawback 
in the application to purely inhomogeneous medium or 
inhomogeneous layer inter-pressed between homogeneous 
layers. To overcome this difficulty, the method involving 
R/T coefficients has been replaced in the present study by 
Runge-Kutta method (of order 4) for solution of 
simultaneous first order differential equation with stress 
free boundary condition. Thus we find numerical integral 
is better than propagator matrix method involving R/T 
coefficients. A comparative study of both exact and 
numerical approaches has been represented in Fig. 1 for 
the earth model as proposed by Heaton and Helmberger 
(1978). The normalized transverse displacement (SH-
Love wave) field has been represented at an epicentral  
distance 100 km. due to  a vertical strike - slip dislocation 
(Fig. 3) at a   depth   36 km   below the  surface in Fig. 8 
for the two earth models- one is homogeneous layered 
Bouchon’s earth model [Bouchon (1982)] and another is 
the modified Bouchon’s model with second and third 
inhomogeneous layers have been placed between 
homogeneous layers in a three layered half-space 
modified model (Fig. 7) of Bouchon (1982). It has been 
observed (Fig. 9) that fundamental mode and first few 
higher modes dominate the displacement field. Figs. 8 and 
10 show the effect of introduction of inhomogeneity in the 
layered homogeneous earth models and serves to be a 
better representation of real earth over the layered models. 
Fig. 4 represents the dispersion curves of the phase and 
group velocities at an epicentral distance 100 km. Both  
the  curves  approach  towards  the  minimum  value of the  

                     
Fig. 10.   Comparison of normalized Vertical displacement  

component in two models of earth at an epicentral   
distance  100 km  due   to  a  buried    vertical   strike   slip   
dislocation  (Fig. 3). Wave (a)  represents  computation  in   
the modified Bouchon’s earth model with second               
inhomogeneous layer has been placed between two   
homogeneous layers, while wave (b) represents  
computation in the  Bouchon’s earth model  [Bouchon 
(1982)]    

 
transverse wave velocity of the media at high frequencies. 
Fig. 5 shows the eigen displacement-depth graph of the 
fundamental and next two higher modes at an angular 
frequency 1.25 Hz. for the Bouchon’s three layered half-
space earth model [Bouchon (1982)]. The result shows 
that the effect dies away as depth increases. A 
comparative study of the normalized radial and vertical 
component of surface displacement field (PSV-Rayleigh 
wave) at two receiving stations [Figs. 6(a&b)] has been 
presented by the present method using R/T coefficients for 
the one layer half-space earth model, proposed by Apsel 
and Luco (1983). The results obtained by the present 
method are in close agreement with that of computed by 
Apsel and Luco (1983). It has been observed that the 
maximum value of the wave amplitude decreases with 
distance from the epicenter. The basic difference of our 
present scheme with that of Apsel and Luco’s (1983) is 
that they evaluated the surface response by the method of 
quadrature using a quartic polynomial, while our present 
scheme computes the displacement field as sum of normal 
modes. 
 

A comparative study of the vertical component of 
displacement field has been placed in Fig. 10 at an 
arbitrarily chosen representation point, at a distance 100 
km from the epicenter. It has been observed that 
amplitude in Fig. 10(a) for the modified Bouchon’s earth 
model with two homogeneous and an inhomogeneous 
layers, decreases rapidly after 28 second in comparison 
with that of given in Fig. 10(b) for the Bouchon’s earth 
model and it has been observed that inhomogeneous layer 
with decreasing values of shear and compressional wave 
velocity, very close to zero, reduces the amplitude of the 
wave field for the vertical component. Similar type of 
comparison also holds in case of radial component of 
displacement field.  
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A systematic and efficient computational scheme has 
been developed for computation of synthetic seismogram 
associated with realistic seismic source model of 
earthquake and we feel that our technique plays an 
important tool in the study of wave propagation in a 
vertically inhomogeneous medium. The computed 
theoretical seismograms are in close agreement with 
previously computed seismograms. The advantage of the 
present study is that the comparison of our theoretical 
seismogram with the observed ones can give an idea of 
proper earth structure or source model by an inverse 
iterative technique. 
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Appendix A 
 
Exact computation through propagator matrix method 
 

A vertically stratified n-layered media overlying a half-space is first considered and origin of the reference system is 
on the surface of the media with z-axis directed inside it.  
 

The displacement vectors u in an inhomogeneous layer satisfy the differential equation [Roy, (2013)]  
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2
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where, layer parameters λ, μ and density ρ are depth dependent. 
 
A source has been considered at a depth ‘h’ below the surface as a time dependent stress discontinuity ( )t at the 

source layer S as [Harkrider, (1964)] 
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where, S+ and S- are respectively the sub-layers below and above the source. The displacement-stress vector is 

continuous at the other layer boundaries. 
 
The dynamic displacement-stress vectors [ , ],  p = PSV or SH  in the jth homogeneous 

layer of a layered-half space media can be expressed in terms of down and up going P and S waves by using modified R/T  
coefficients as [Apsel and Luco (1983); Chen (1993) and  Hisada (1994)]  
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where, and are respectively the down & up going coefficients and as layer matrix in the jth layer. ( )j

dC h ( )j
uC h jE

 
 

Appendix B 
 
Numerical computation by Runge Kutta method of order 4 
 

The displacement-stress vectors [ , ], p = PSV or SH at the jth layer in a N-layered half space 

media, satisfies the differential equation [Takeuchi and Saito (1972); Aki & Richards (2002)]. 

( , , )j
pU k z ( , , )j

pD k z

 
j j
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                                                     (B.1) 

 
where, A is either a 4 × 4 matrix (PSV case) or a 2 × 2 matrix (SH case).  

 
The displacement-stress vectors [ , ], p = PSV or SH in the jth layer satisfies the           

continuity condition at the jth interface and the stress vanishes on the free. Thus, [

( , , )j
pU k z ( , , )j

pD k z

( , , )j
p jU k z ,                        

( , , )j
p jD k z ]t = [ 1( , , )j

p jU k z , 1 ( ,j , )p jk zD ]t, except at the source and  = 0. The seismic wave field also  1 ( , ,0)pD k
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satisfies the radiation condition at infinity. The vanishing of stress on the free surface is used to evaluate a set of finite 
number of wave numbers [ , n = 0, 1, 2,…, L(nk  )] for a given frequency by shooting method which is similar to that 

of bisection method and the system (B.1) is numerically evaluated by Runge Kutta method of order 4. 
 
 

 

  

 


