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सार — यह अÚययन उçणकिटबंधीय चक्रवात अàफन की उ×पिƣ और उसके तीĭीकरण मɅ मदद करने वाले 
िसनॉिÜटक और गितशील पिरिèथितयɉ का पता लगाने के िलए िकया गया है। ऐसा देखा गया है िक समुद्र सतह के 
उÍच तापमान की अनुकूल पिरिèथितयɉ, उÍच ऊजार् और कै्षितज पवन के क्षीण उÚवार्धर अपǾपण से, 200 हेक्टा 
पाèकल STWJ से अàफन की  उ×पिƣ मɅ मदद िमली है। क्षीण ऊÚवार्धर अपǾपण, गमर् समुद्र सतह और ठंड ेवायुमंडल 
और प्रबल ऊपरी èतर के िवचलन के बीच उÍच तापमान ढाल ने समुद्र की सतह और वातावरण के बीच गमीर् और नमी 
के आदान-प्रदान को सतह की गमीर् के प्रवाह और ऊÚवार्धर हवाओं के माÚयम से बढ़ा िदया और इस  प्रणाली ने संवहन 
और तीĭता को बढ़ाया। समुद्री सतह का असामाÛय उÍच तापमान (17 मई को), और प्रबल ऊपरी-èतरीय िवचलन, 
िनचले èतर के अिभसरण और िनàन पवन अपǾपण के संयुक्त प्रभाव के कारण अàफन के तेजी से तीĭीकरण का कारण 
हो सकता है। 400 हेक्टा पाèकल द्रोणी के साथ अंत: िक्रया न ेभी अàफन को तीĭ कर िदया। इस द्रोणी और ऊपरी èतर 
के जेट ने अàफन के प्रक्षेप पथ को िदशा िदखाई।      

 
ABSTRACT. This study has been undertaken to find out the synoptic and dynamical conditions those have helped 

in the genesis and intensification of tropical cyclone Amphan. It has been found that, under favourable conditions of high 
SST, high energy and weak vertical shear of horizontal wind, the 200 hPa STWJ has helped in the genesis of Amphan. 
The weak vertical shear, the high-temperature gradient between warmer sea surface & colder atmosphere and strong 
upper-level divergence has increased the heat and moisture exchange between the sea surface and the atmosphere via 
surface heat fluxes and vertical winds and enhanced the convection and intensified the system. Abnormally high SST            
(on 17th May) and combined effect of strong upper-level divergence, lower level convergence and low wind shear may be 
the reason behind the rapid intensification of Amphan. The interaction with 400 hPa trough has also intensified Amphan. 
This trough and upper-level jet have guided Amphan in its trajectory. 

 

Key words  –  Amphan, Super cyclone, STWJ, Surface sensible heat flux, Surface latent heat flux, Genesis, ERA5.
   

 

 
1.  Introduction 
 

Tropical cyclones are one of the most notorious 
weather phenomena in the world; belong to the category 
of extremely hazardous weather events. Their landfalls 
can cause human fatalities, structural damages and 
economic losses worldwide (Manganello et al., 2012; 
Pielke and Pielke, 1997; Simpson et al., 2002). They are 
basically large-scale rotary storms that form over warm 
ocean waters in the tropical regions (Montgomery and 
Farrell, 1993). India is mostly affected by the cyclones 
which develop in the Bay of Bengal (BoB) and the 
Arabian Sea in the pre-monsoon and post-monsoon 
seasons. These cyclones basically move west-
northwestwards to northwestwards (Chinchole and 
Mohapatra, 2017). The average life period of these 
cyclones is 4-6 days (Kumar et al., 2017). The                
average frequencies of these cyclones over BoB and the 

Arabian Sea are 4 and 1 respectively (Mohapatra et al., 
2014b). An early prediction about the genesis, 
development and track of these systems can save many 
lives.  
 

According to the scientists, tropical cyclones mainly 
develop over the warm ocean with surface temperatures 
(SSTs) above 26 °C (Palmen, 1948), decreased vertical 
shear of horizontal wind (Gray, 1968), enhanced low-level 
moisture content and increased latent and sensible heat 
fluxes from the sea surface to the marine boundary layer. 
Many scientists have also argued that genesis and 
development of tropical cyclones depend on nearly classic 
baroclinicity (Bosart and Bartlo, 1991), the interaction of 
easterly waves or other low-level disturbances with 
tropical upper tropospheric disturbances (Ramage, 1959; 
Sadler, 1976; Montgomery and Farrell, 1993),                       
Rossby wave energy dispersion of a preexisting typhoon 
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upper troposphere or in the stratosphere characterized by 
strong vertical and lateral wind shears featuring one or 
more velocity maxima. STWJ is one of the most important 
jet streams and the mean position of this jet stream over 
Indian sub-continent is at 27° N at height of about 12 kms 
(200 hPa). This jet is caused by the concentration of the 
horizontal temperature gradient below the jet level and the 
reversal of the gradient above the jet level. This is a large 
scale feature of the upper air circulation with a high-speed 
core which can be distinguished from the general wind 
current. This jet is located near the poleward boundary of 
the Hadley cell. There is a downstream strengthening of 
the wind speed in this jet stream. This is seen from 
Jodhpur to Guwahati across India. The jet continues 
further north-eastwards across China and Japan with core 
speeds increasing progressively reaching maximum over 
south Japan. It is seen that in association with the high-
speed centres along the jet axis there is upper air 
divergence in the left entrance and right exit sectors. 
 

To find the jet 200 hPa wind has been plotted. 
 

4.2. Wind shear 
  

The speed and direction of the wind are different in 
different heights (pressure level). Generally, wind speed 
increases with height. Vertical shear of the horizontal 
wind is calculated by using shear = velocity of wind at the 
upper level – velocity of wind at a lower level. Here wind 
shear between 200 to 1000 hPa has been taken into 
consideration. 
 

4.3. Divergence 
 

This parameter is the horizontal divergence of 
velocity. It is the rate at which air is spreading out 
horizontally from a point, per square meter. This 
parameter is positive for air that is spreading out, or 
diverging and negative for the opposite, for air that is 
concentrating or converging (convergence). 200 hPa mean 
divergence of all synoptic hours for each day has been 
shown here. 
 

4.4. Vertical velocity (ω) 
 

This parameter is the speed of air motion in the 
upward or downward direction. Negative values of 
vertical velocity indicate upward motion. It can be 
expressed as: 

 

dt

dp
                                                                 (1) 

 

where, 
dt

dp
  is the rate of change of pressure. 

4.5.  CAPE 
  

This is an indication of the instability (stability) of 
the atmosphere and can be used to assess the potential for 
the development of convection, which can lead to heavy 
rainfall, thunderstorms and other severe weather. This is 
the potential energy represented by the total excess 
buoyancy. The larger positive CAPE value indicates 
larger instability. 
  

4.6. Surface heat fluxes 
  

Surface latent heat flux is the transfer of latent heat 
(resulting from water phase changes, such as evaporation 
and condensation) between the Earth’s surface and the 
atmosphere through the effects of turbulent air motion. 
Surface sensible heat flux is the transfer of heat (excluding 
latent heat) between the Earth’s surface and the 
atmosphere through the effects of turbulent air motion. 
The magnitude of sensible heat flux is governed by the 
difference in temperature between the surface and 
overlying atmosphere, wind speed and surface roughness. 
Surface heat fluxes are positive downwards and negative 
upwards. 
  

4.7. Column rainwater and liquid water content 
 

Total column rainwater is the total amount of water 
in droplets of raindrop size (which can fall to the surface 
as precipitation) in a column extending from the surface of 
the Earth to the top of the atmosphere. Total column liquid 
water content is the amount of liquid water contained 
within cloud droplets in a column extending from the 
surface of the Earth to the top of the atmosphere. Rain 
droplets which are much larger in size (and mass) are not 
included in this parameter.  
 

4.8. Vertical integral of total energy 
 

This is the vertical integral of total energy for a 
column of air extending from the surface of the Earth to 
the top of the atmosphere. Total atmospheric energy is 
made up of internal, potential, kinetic and latent energy. 
This is measured in Joule/m2. 
 

4.9. Upper-level trough  
 

The trough is an elongated region of relatively low 
atmospheric pressure without a closed isobaric contour 
that would define it as a low-pressure area. The trough 
may be near the surface or aloft. Upper-level troughs 
reflect cyclonic filaments of vorticity. Their                  
motion induces upper-level wind divergence.                 
Their interaction with a cyclonic system can influence and 
guide the system. The trough at a particular level can be 
found out by plotting the geopotential at that particular level.  
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abundance of moisture around the cyclone with the maximum 
around the eye. As depicted in Figs. 12(a-c). moisture 
supply from the south-west (specific humidity > 20 g/kg) 
sustains the moisture content of the system and enhances 
the low-level convection. Moreover, the horizontal 
distribution of the convective available potential energy 
(CAPE) indicates that the areas of high CAPE around 
Amphan are collocated with the areas of abundant amount 
of surface moisture content. (Lee et al., 2018) observed 
that tropical cyclone intensification rate increases with 
increasing CAPE and inner core CAPE are smaller than 
that of the ambient region [Figs. 13(a-c)]. They also found 
a positive relationship between radial CAPE gradient and 
the intensification rate. Fig. 13(b) shows that on 19th May 
1800 UTC, CAPE  exceeds  5250 Jkgm-1 at the south-west 
sector of Amphan. The upper-level jet, steering flow 
(averaged wind fields between 850-300 hPa to incorporate 
the effect  upper-level trough ridge) guides Amphan in its 
trajectory till landfall on the West Bengal coast [Fig. 17(a-i)]. 
Amphan causes heavy rainfall and high surface winds   
[Figs. 11(a-c)] near the area of landfall fall which caused 
severe destruction.  
 

GPP which is described in subsection 4.11 has been 
calculated using equation 2 and its daily evolution is 
shown in Figs. 16(a-i). It is seen that there is a gradual                    
increase in GPP. The GPP value above 30 (threshold                    
by Kotal et al., 2009) is seen from 16th May onwards. 
From 45 on 16th May, it abruptly reaches to 75 on                   
17th May. As discussed earlier Amphan underwent rapid 
intensification on 17th May. The minimum value                             
of GPP around 10 is seen on 12th May and the value 
reaches to a maximum around 85 on 18th May. On                    
this day Amphan reached its maximum intensity and 
transformed into a super cyclone. Therefore the maximum 
value of GPP occurs when Amphan reaches its maximum 
intensity. 

 
As stated in Section 3, on 17th May Amphan 

underwent rapid intensification and transformed into a 
severe cyclonic storm with winds ranging 140-210 km/h. 
At a given latitude the rate of intensification increases 
with increasing SST. (Sanap et al., 2020) showed that the 
region of high SST coincides with the region of rapid 
intensification in the case of cyclone Ockhi. From          
Fig. 3(f), it is clear that SST was abnormally high (32 °C) 
on 17th May. In addition to this other factors such as low 
shear [Fig. 4(f)], high upper-level divergence [Fig. 5(c)] 
and lower level vorticity [Fig. 6(c)] may be the reason 
behind this rapid intensification. Before the landfall 
Amphan weakened and became an extremely severe 
cyclonic storm. The reason may be reduced upper-level 
divergence [Fig. 5(f)], low lower-level convergence             
[Fig. 6(f)], low SST [Fig. 3(i)] and low surface latent heat 
flux [Fig. 8(c)]. 

6. Conclusions 
 

The main objective of this study is to find out the 
synoptic and dynamical conditions that led to the genesis 
and intensification of tropical cyclone Amphan. The 
synoptic and dynamical conditions associated with 
Amphan have been discussed thoroughly in section 5. 
From this, it can be concluded that under favourable 
conditions of high SST, high energy and weak vertical 
shear of horizontal wind, the 200 hPa STWJ has helped in 
the genesis of Amphan. The weak vertical shear, high 
SST, high-temperature gradient between warmer sea 
surface & colder atmosphere and strong upper-level 
divergence have increased the heat and moisture exchange 
between the sea surface and the atmosphere via surface 
heat fluxes and vertical winds. These have enhanced 
convection and intensified the system. The interaction of 
400 hPa trough with Amphan has also intensified it. 
Abnormally high SST (on 17th May) and combined effect 
of strong upper-level divergence, lower level  
convergence and low wind shear may be the reason 
behind the rapid intensification of Amphan. The 400 hPa 
trough and upper-level jet have guided Amphan in its 
trajectory. 
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