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lkj & o"kZ 1986 ds Qjojh ekg ds vkjEHk ls gh izk;}hih; Hkkjr ds if’peh rV ds fudV nf{k.kh 
xqtjkr ds oylkM ftys esa HkwdEiksa dh vf/kd ek=k ns[kh xbZ gSA lw{e HkwdEi ys[kh ds latky }kjk fd, x, 
HkwdEih; ekuhVju ls 1 ls 15 fd- eh- rd dh Qksdh dh xgjkbZ lfgr 7 × 10 oxZ fd- eh- ds {ks= esa ,d 
lq&ladsafnzr HkwdEih; xfrfof/k dk irk pyk gSA ekpZ 1986 ls twu 1988 ds nkSjku vk, dqy 21]830 HkwdEi 
vfHkysf[kr fd, x,A vlk/kkj.k  vVªSDVj  vkSj  y;kiwukso  ?kkrkad  ds  vk;ke  ds  vkdyu  ds  ek/;e  
ls fu/kkZj.kkRed vO;oLFkk dh tk¡p djus ds fy, bl vof/k ds HkwdEiksa dh nSfud vkòfÙk dk mi;ksx fd;k 
x;k gSA vlk/kkj.k vVªSDVj dh 2-1 ds U;wu vk;ke vkSj cg̀r y;kiwukso ?kkrkad ds /kukRed eku ls HkwdEi dh 
izkxqfDr djus ds fy, de ls de 3 izkpyksa lfgr oylkM esa vk, HkwdEiksa dh vf/kd ek=k ls vO;ofLFkr 
xfrdksa dk irk pyk gSA bu ifj.kkeksa ls Hkkjr ds var ifV~Vdk vkSj var% ifV~Vdk esa fu/kkZj.kkRed vO;oLFkk 
ds vfHky{k.kksa esa ikbZ xbZ fHkUurk dh iqf"V dh xbZ gSA 

 
ABSTRACT. Valsad district in south Gujarat near the western coast of the peninsular India experienced 

earthquake swarms since early February 1986.  Seismic monitoring through a network of micro earthquake seismographs 
showed a well concentrated seismic activity over an area of 7 × 10 km2 with the depth of foci extending from 1 to 15 km.  
A total number of 21,830 earthquakes were recorded during March 1986 to June 1988.  The daily frequency of 
earthquakes for this period was utilized to examine deterministic chaos through evaluation of dimension of strange 
attractor and Lyapunov exponent.  The low dimension of 2.1 for the strange attractor and positive value of the largest 
Lyapunov exponent suggest chaotic dynamics in Valsad earthquake swarms with at least 3 parameters for earthquake 
predictability.  The results indicate differences in the characteristics of deterministic chaos in intraplate and interplate 
regions of India.  
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1. Introduction  
  

The term swarm is generally used to describe a 
group of related earthquakes concentrated in space and 
time without an obvious principal event.  Such swarms 
commonly occur within the Peninsular India which 
dissipate after a few days or months.  However, 
exceptions have been noted in a few cases when sudden 
increase in seismic activity is followed by a larger event in 
this region; we classify them as precursory swarms.  
Srivastava and Dube (1996) compared the characteristics 
of precursory and non-precursory types of swarms and 
found that the non-precursory swarms have focal depth 
down to only 2 km or so; but precursory swarms are 
associated with larger focal depths.  The earthquake 
swarm of 1986 over the Valsad region is concentrated 
within an area of 7 × 10 km2 with focal depths ranging 
from 1 to 15 km2 (Rao et al. 1991) with a larger number 
between 8 and 12 km.  Better physical understanding of 

such swarms requires  dynamical approach which has not 
been attempted so far.   

 
The objective of this paper is to examine the 

existence of deterministic chaos in Valsad earthquake 
swarms using two approaches namely through the fractal 
dimension of strange attractor (Grassberger  and Procaccia 
1983) and the Lyapunov exponent (Wolf et al., 1985).  
The results have also been compared with those reported 
for Koyna region (Srivastava et al., 1994) and other 
regions to understand the difference between interplate 
and intraplate earthquakes.  
 
2. Geotectonic set up  
  
(i)  Geology - The south Gujarat area around Valsad is 
occupied by flows and dykes of basaltic rocks.  It forms a 
part of north western margin of the large Deccan trap 
formation  of  Cretaceous  Eocene age.  The  Deccan traps  
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Fig. 1.  Location of Valsad swarms and major tectonic features on the Peninsular India.  The Koyna region is also shown 

 
 
 
are overlain by older alluvium of late Plestocene age and 
subsequent Holocene formation like newer alluvium 
blown sand and beach deposits.  
  
(ii)  Tectonics - Fig. 1 shows the location of Valsad 
swarms in relation to main tectonic features.  The Deccan 
traps dip into the Arabian Sea at an angle of 7° to 10° as a 
monocline whose axis turns through Panvel and Kalyan to 
south of Surat.  This monoclinal feature is termed the 
Panvel flexure.  Along its axis, which is fractured, there 
are several hot springs namely Unai, Mola-Amla, Arnai 
and others.  Another major fault is in the direction ENE-
SSW along the Narmada river. The Tapti river runs 
parallel and close to this fault. Other major tectonic 
features trend along N-S and NW-SE.  

3. Seismic activity  
   

The earthquake activity commenced in the first week 
of February 1986 when more than 50 shocks with 
magnitude 2.5 and above were felt. The largest earthquake 
of magnitude 4.6 occurred on 26 April 1986.  Prior to 
these, two earthquakes both of magnitude 3.6 occurred on 
16 and 17 February 1986.  The locations of these three 
earthquakes were obtained through records of 
seismological observatories of India Meteorological 
Department and other stations operating around Kadana, 
Ukai and Kevadia projects.  An observatory at Anklachh 
was established in the region from March 1986 which 
recorded the largest number of events in the networks of 
stations  established by May 1986 (Srivastava 1991).  The  
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Fig. 2. Epicentral distribution of earthquake swarms 
 
 
area remained active till end of 1987 and the activity 
started declining thereafter to 1 to 6 events per day in June 
1988.  From March 1986 to June 1988, a total number of 
21,830 micro earthquakes were recorded at Anklachh.  
Fig. 2 shows the epicentral distribution of Valsad swarms 
in Gujarat. The epicenters of the earthquakes concentrated 
in an area of 7 × 10 km2 with focal depths ranging from 8 
to 12 km for most of these earthquakes.  
  

Detailed examination of the seismic activity has 
shown that the sequence broadly fits type III of Mogi’s 
model which is characteristic of highly heterogeneous 
region with concentrated applied stress.  Rao et al. (1991) 
have found that the epicenters of the microearthquakes 
were concentrated along a N-S axis which changed to 
NNE-SSW towards December 1986.  The value of ‘b’ in 
Gutenberg Richter frequency magnitude relationship was 
found to vary between 0.78 and 1.03 during the period of 
observation.  
 
4. Chaotic dynamics  
  

A dynamical system whose equations and initial 
conditions are fully specified is called ‘deterministic.’  

Solutions of deterministic equations become chaotic if 
adjacent solutions diverge exponentially in phase space.  
The evolution of dynamical systems can be represented by 
trajectories in the state space from some initial condition.  
For periodic systems that develop deterministically, all 
trajectories initiated from different initial conditions stay 
on low dimensional smooth topological manifolds, called 
attractor.  These attractors are characterised by an integer 
dimension, equal to the topological dimension of the 
submanifold.  An important property of these attractors is 
that trajectories converging on them do not diverge 
implying long term predictability of the system.  It has 
been found for many dynamical systems, that the 
trajectories stay on an attracting submanifold which is not 
topological.  These submanifolds are called ‘fractal’ sets 
and are characterized by a dimension which is not an 
integer.  The corresponding attractors are called ‘strange’ 
attractors.  An important property constraints could be 
developed for attractors of low dimension in spite of the 
unpredictability of chaotic system in the long run.  The 
determination of the dimension of an attractor requires a 
number of constraints that should be satisfied by a model 
used to predict the evolution of a system.  The higher the 
value of the fractal dimension, the more complex is the 
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system.  The fractal dimension also gives the minimum 
and the maximum number of independent parameters 
required for modeling the system.  Being fractal in nature, 
more details are revealed as they are increasingly 
magnified.  
  

Instead of taking recourse to the mathematical 
formulation of a nonlinear system through differential 
equations, an alternate method is adopted in practice by 
replacing the state space by the so called phase space 
which is a co-ordinate space defined by the state variable 
of a dynamical system.  The phase space may be produced 
using a single record of observable variable x(t) from the 
system.  The physics behind such an approach is that a 
single record from a dynamical system is the outcome of 
all interacting variables and thus information about the 
dynamics of that system should, in principle, be included 
in an observable variable.  
  

It is assumed that variables present in the evolution 
of the system in question satisfy a set of n first-order 
differential equations:  

 
( )nxxxfx ,.....,, 211

'
1 =  

( )nxxxfx ,.....,, 212
'
2 =  

……………………… 
……………………… 

( )nnn xxxfx ,.....,, 21
' =                                             (1) 

 
where the prime indicates the first derivatives with 

respect to time.  In such a case, the co-ordinates of the 
state space are (x1, x2, …, xn).  In this work, we have 
attempted to obtain the fractal dimension of the strange 
attractor (Grassberger and Procaccia, 1983) and Lyapunov 
exponents (Wolf et al., 1985).  These two methods which 
characterize chaos, involve the geometry of the motion in 
the phase space of the system.  
 
 

(i)  Fractal dimension of strange attractor  
  

The system Eqn. (1) can be reduced to a single 
differential equation of one of the variables xj(t), say, x(t), 
if all others are eliminated by differentiation.  This gives 
nth order nonlinear differential equation 

 
( ))1(')( ,.....,, −= nn xxxfx                                          (2) 

 
where x(i) denotes is the derivative with respect to 

time.  Ruelle (1981) suggested that instead of a continuous 
variable x(t) and its derivatives, it will be easier to work 
with x(t) and the set of variables obtained from it, by 
shifting its values by a fixed delay parameter τ . 

We may begin the commutation with a time.  series 
of dependent or independent variable x(t) of the system.  
(Ruelle 1981). We construct points Xi in an m-dimensional 
space : 

 
Xi = {x(ti), x(ti+τ),…, x[ti + (m-1) τ]}                  (3)

      
with i = 1, 2,……N - m+1( = k, say), 

 
where N  is the number of data in the time series of x.  

Here, ti is the initial time and ti = t1 + (i-1) τ.  Thus one 
discretizes the orbit to a set of k points Xi in the state 
space.  The distance sij = |Xi - Xj| between the pair of points 
Xi and Xj is calculated as the Euclidian norm.  We look for 
these points for which their distance is less than a given 
correlation distance r. A correlation integral is then 
obtained as (Grassberger and Procaccia, 1983) 

 

Cm (r) =    2
1

K
    [number of pairs (i, j) with sij < r] 

 
where r is correlation length.  Cm (R)  may be 

calculated effectively using the relation (Abraham et al. 
1986 and Theiler, 1988) 

 

( ) ( )ij

k

ij

k

i
m srH

K
rC −= ∑∑

+== 11

1                               (4) 

 
where, 

  
H(x) = 1, for x > 0 

   = 0, for x < 0 
 

and K = k(k-1)/2 with k = N-m + 1.  K gives the 
number of distinct pair of points.  
  

The dimension D of the attractor is related to Cm(R) 
by the relation 
  

Cm (R) = rD, 
  

where r is small; or, 
  

log Cm(R)  = D log(r)         (5) 
 

Hence, the dimension D of the attractor is given by 
the slope of the log Cm versus log (r). The scaling region 
is obtained for various embedding dimensions.  As we 
increase the embedding dimension m, the slope saturates 
at a limiting value which is considered as fractal 
dimension of the strange attractor.  The delay time is 
slowly increased until the same fractal dimension is 
obtained for two consecutive delay times.  
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Fig. 3. Number of earthquakes per day recorded at Anklachh Seismological Observatory for the period 1 March 1986 to June 1988  
 
 
 
It may be mentioned that care is taken to avoid 

spurious results being obtained by keeping the number N 
of earthquakes such that the criterion, 2 log (N)> D is 
satisfied (Ruelle, 1990).  It may be noted from the next 

section that the data set available for this region fully to 
meet this criterion in view of low strange attractor 
dimension obtained from the time series of earthquakes in 
Valsad region.    
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Figs. 4(a&b).  (a) Plot of log Cm(r) versus log r based on daily frequency of earthquakes for various 
embedding dimension for a delay parameter of 2 days and (b)  Slope versus embedding 
dimension in Valsad region using daily frequency of earthquakes for time delay of 1,2 
and 3 days 

 

 

(a) 

(b) 
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(ii)  Lyapunov exponent 
  

The solution of equations (1) conceptually follows 
solutions that start within a hypersphere of radius r.  As 
the solution evolves, the hypersphere is deformed into a 
hyper ellipsoid with principal axes εI(t). 

 
Lyapunov exponent,  
 
λi = ( ) ( ) ( ) ( )[ ]trtrt i ./0limlim ε→∞→                     (6)  

 
If λI < 0, all solutions that start with initial conditions 

close to each other will converge, i.e., there is no 
sensitivity to initial conditions.  But if just one λi is 
positive, the nearby solutions will diverge, i.e., there will 
be extreme sensitivity to the initial conditions.  The 
growth of uncertainty in time t is given by  
  

N = N0eλt        (7) 
 

where N0  is the initial condition and λ is related to 
the concept of entropy in information theory and also 
related to another concept, i.e., the Lyapunov exponent, 
which measures the rate at which nearby trajectories of a 
system in phase space diverge.  Its unit is reciprocal of 
time e.g. second-1.  The largest Lyapunov exponent λ, of 
the time series is found using the computer programme 
given by Wolf et al. (1985). A positive Lyapunov 
Exponent suggests chaotic nature of earthquake while a 
non-chaotic system is characterized by negative Lyapunov 
Exponents.  
 
5. Data analysis  
  

We have considered 21,830 earthquakes in the 
epicentral area given in Fig. 2 for the period March 1986 
to June 1988 for Valsad region.  The observable variable 
x(t) has been considered as the number of earthquakes 
every day recorded at Anklachh observatory and this data 
is shown in Fig. 3.  The total number N = 851.  The delay 
parameter τ was chosen as 1, 2 and 3 days.  
  

In order to obtain the strange attractor dimension of 
the earthquake sequence, we compute Cm(r) for different 
values  of r using the equation (4) for various embedding 
dimensions m.  We note that log Cm(r)  saturates at large 
values of r due to finite size of the attractor and at small 
values of r due to the finite number of data points.  In this 
plot we choose a scaling region, where log Cm(r)  is linear 
to log r.  For each embedding dimension the slope of the 
straight line passing through the points in the scaling 
region is obtained and these slopes against embedding 
dimensions are plotted in Fig. 4(b).  The value of slope for 
delay parameters of one and two days, converge to 2.1 

which gives the dimension of the strange attractor.  In 
addition, the largest value of the Lyapunov exponent for 
the same data sets gave positive value of 0.13804, 
suggesting strong dependence upon initial conditions.  
  

During June 1988 to December 1988, swarm activity 
declined significantly.  To see its effect, we have extended 
the analysis including the earthquakes recorded till the end 
of 1988 and found that the largest Lyapunov exponent 
remained positive (0.11340) supporting again chaotic 
dynamics for the occurrence of earthquakes in the region.  
 
6. Results and discussion 
  

Figs. 4(a&b) show that the value of strange attractor 
dimension is 2.1 implying that atleast 3 parameters are 
needed for modeling earthquake system in Valsad region, 
of Gujarat.  In the neighbouring Koyna region, Srivastava 
et al. (1994)  found strange attractor dimension of 4.4.  A 
low value of a strange attractor dimension of 3.4 was also 
reported in Aswan region of Egypt which is characteristic 
of shield region similar to Peninsular India (Srivastava          
et al. 1995).  It may be mentioned that the sequence of 
volcanic eruptions have been found to be deterministically 
chaotic with a low dimension of about 2 in La Reunion 
and 4 in Hawaii regions (Sornete et al., 1991).  Such 
volcanic regions show a predominance of earthquake 
swarms.  However, their strange attractor characteristics 
have not been reported so for.  
  

Comparing the low value of strange attractor 
dimension in the Peninsular India with that in the 
tectonically active Himalaya-Northeast India region, we 
find that the lower value of strange attractor dimension in 
Valsad and Kyona regions may be a characteristics of 
intraplate seismicity noting that higher dimensions 
ranging from 6.1 to 8.5 have been found in Northwest 
Himalaya and Northeast India which lie in a complex 
tectonic region close to Indian-Eurasian plate boundary 
(Bhattacharya, 1990; Bhattacharya and Srivastava, 1992; 
Srivastava et al., 1995, 1996).   It is also interesting to 
note that higher strange attractor dimension of 7.2 was 
also reported in Nurek region in Tadjikistan (Bhattacharya 
et al., 1995).  On the other hand, a relatively lower value 
of 6.1 with positive Lyapunov exponent was found in 
California region (Srivastava and Sinha Ray, 1999).  
Much lower value of 3.2 near Japan can be attributed to 
difference in tectonics (Pavlos et al., 1994). 
  

It may be mentioned that the statistical 
characteristics of earthquake swarms have been studied in 
several regions of the world with Matsushiro swarms in 
Japan as an exceptional example (Drakopoulos et al. 
1972).   Further insight into the dynamics of earthquakes 
swarms can be provided when adequate data in other 
tectonic regions become available.  
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7. Conclusions  
  

The above study has brought to light that the 
earthquake swarm near Valsad, Gujarat in the Peninsular 
India are characterised by a strange attractor dimension of 
2.1 and a positive Lyapunov exponent.  The results 
provide further support to the difference in the chaotic 
dynamics between intraplate and interplate tectonics of the 
Indian plate region.  
 
Acknowledgements 
  

The authors are grateful to the Director General of 
Meteorology for providing facilities.  One of us (HNS) is 
also thankful to the Council of Scientific and Industrial 
Research, New Delhi for financial support.  The authors 
are also grateful to the Director, Gujarat Engineering 
Research Institute.  Vadodara for supplying the micro 
earthquakes  data.  
 

References 
 

Abraham, N. B., Albano, A. M., Das, B., Guzam, G. De., Yong, S., 
Goffia, R. S., Puccioni, G. P. and Tredicce, J. R., 1986, 
“Calculating dimension of attractor from small data sets, Phys. 
Lett. A, 114, 217-221. 

Bhattacharya, S. N., 1990, “Fractal dimension of earthquakes in 
Dharamshala region Nat. Symp. Recent Advances in 
Seismology and their applications”, Bhabha Atomic Research 
Centre (abstracts), SS 4-11. 

Bhattacharya, S. N. and Srivastava, H. N., 1992, “Earthquake 
predictability in Hindukush region using chaos and seismicity 
pattern”,   Bull. Indian Soc. Earthq. Tech., 29, 23-25. 

Bhattacharya, S. N., Srivastava, H. N. and Sinha Ray, K. C., 1995, 
“Large fractal dimension of chaotic attractor for earthquake 
sequence near Nurek reservoir”,  Mausam, 46, 187-192. 

Drakopoulos, J., Srivastava, H. N. and Terashima, T., 1972, “Seismicity 
of Matsushiro microearthquake swarm”, Annali di Geofisica, 
23, 177-190. 

Grassberger, P. and Procaccia, I., 1983, “Characteristics of Strange 
attractors”, Phys. Rev. Lett., 50, 346-349. 

Pavlos, G. P., Karakatsanis, L., Latoussakis, L. B., Dialetis, N. and 
Papaicannov, G., 1994, “Chaotic analysis of time series 
composed of seismic events recorded in Japan”, Int. Jr. 
Bifurcat. Chaos, 4, 87-98.  

Rao, D. T., Jambusaria, B. B., Srivastava, S., Srivastava, N. P., Hamid, 
A., Desai, B. N. and Srivastava, H. N., 1991, “Earthquake 
swarm activity in south Gujarat”, Mausam, 42, 89-98.  

Ruelle, D., 1981, “Chemical kinetics and differentiable dynamical 
system”,  In nonlinear phenomena and chemical dynamics (Eds) 
A. Pacoult and C. Vidal, Springer-Verlag, 30-37. 

Ruelle, D., 1990, “Deterministic chaos: The science and the fiction (The 
Claude Bernard lecture)”, Proc. R. Soc. London (Math. Phys. 
Sci.), A427, 241-248. 

Sornette, A. J. Dubois, K. L. Cheminee and D. Sornette, 1991,  “Are 
sequence of volcanic eruptions deterministically chaotic”,                  
J. Geophys. Res., 96, 11931-11945. 

Srivastava, H. N., Bhattacharya, S. N., Sinha Ray, K. C., Mahmoud, S. 
M. and Yunga, S., 1995, “Strange attractor characteristics of 
earthquakes in Koyna”, Aswan and Nurek reservoirs.   
PAGEOPH, 145, 209-217. 

Srivastava, H. N., Bhattacharya, S. N. and Sinha Ray, K. C., 1994, 
“Strange attractor dimension as a new measure of 
seismotectonics  of Koyana region Earth and Planet”, Sci. 
Letters, 124, 57-62 

Srivastava, H. N., Bhattacharya, S. N. and Sinha Ray, K. C., 1996, 
“Strange attractor characteristics of earthquakes in Shillong 
plateau and adjoining region”, Geophys. Res. Letters, 24,       
3519-3522. 

Srivastava, H. N. and Dube, R. K., 1996, “Comparison of precursory and 
non-precursory swarm activity in peninsular India”, 
Tectonophys, 265, 327-339. 

Srivastava, H. N. and Sinha Ray, K. C., 1999, “Chaotic dynamics in 
California and characteristic Parkfield earthquakes”, Mausam, 
50, 99-104. 

Theiler, J., 1988, “Lacunarity is a best estimator of fractal dimension”,  
Phys. Lett. A, 133, 195-200. 

Wolf, A., J. B. Swinney, L. H. and Vastano, A., 1985, “Determining 
Lyapunov exponents from time series”, Physica, 16D, 285-317.  

 
 
 
 
 
 
 
 


	Acknowledgements
	References


