# 50 year rainfall data analysis and future trend in Saharanpur region

VARTIKA SINGH and PRAMENDRA DEV\*

SRF in DTRL, Defence Research and Development Organization, New Delhi – 110 054, India \*Prof. in, School of Studies in Earth Science, Vikram University, Ujjain – 456 010, India (Received 17 September 2010)

e mail : vartika\_vartu@yahoo.co.in; drpdev@yahoo.com

सार – इस शोध पत्र में पश्चिमी उत्तर प्रदेश में स्थित सहारनपुर क्षेत्र की भूजल प्रणाली के फिर से भरने में वर्षा जल के पैटर्न के पर्यावरणीय प्रभावों का अध्ययन किया गया है। सहारनपुर क्षेत्र में 50 वर्ष (1959 से 2008) की वर्षो असमानता के गणितीय विश्लेषण से 1209.8 मि.मी. के वार्षिक औसत वर्षा मान और 497.70 से 4357.5 मि. मी. तक की काफी अच्छी रेंज का पता चला है। औसत वार्षिक वर्षा के कंप्यूटर मान से विचलन की सकारात्मक प्रवृत्ति भू जल जलाश्य के पुनः भरण की समुचित अवधियाँ दर्शाते हैं। पिछले 03 वर्ष के दौरान वार्षिक वर्षा के रिकॉर्ड किए गए आँकड़ें आकलित वार्षिक औसत वर्षा से कम मान दर्शाते हैं जिससे वर्षा की नकारात्मक प्रवृत्ति का पता चलता है। वर्षा के आँकड़ों के सांख्यिकीय विश्लेषण में विभिन्न सांख्यिकीय प्राचलों के परिकलन शामिल हैं जिससे भी वर्षा की नकारात्मक प्रवृत्ति का पता चलता है। वर्ष 2018 तक की अवधि के लिए भविष्य में वर्षा की संभावित प्रवृत्ति का पूर्वानुमान लगाया गया है जिससे वर्षा की नकारात्मक प्रवृत्ति का संभावनाओं का विकास करने के लिए भी इस प्रस्ताव को शामिल किया गया है।

**ABSTRACT.** The environmental implications of rainfall pattern in replenishment of ground water system of Saharanpur region, located in western Uttar Pradesh, have been discussed. The mathematical analysis of rainfall dissimilarity of Saharanpur region for a period of 50 year (1959 to 2008) display a quite good range from 497.70 to 4357.5 mm with an annual average rainfall value of 1209.8 mm. The positive trend of departure from the computer value of average annual rainfall exhibits appropriate periods for recharge of ground water reservoir. The recorded data of annual rainfall during the last 3 year reveal values below the calculated annual average rainfall, pointing out negative trend. The statistical analysis of rainfall data involves computations of various statistical parameters, which also support the negative trend of rainfall. The prediction of expected future rainfall trend for a period up to 2018 has been made, which indicates a negative trend. The proposal have been incorporated to implement a plan for augmentation of ground water resource and also to develop possibilities of rainwater harvesting.

Key words - Rainfall, Environmental impact, Rainwater harvesting, Precipitation.

### 1. Introduction

The term 'Rainfall' is most commonly applied for the liquid precipitation. According to Navarra (1979), rainfall is usually referred to "The amount of precipitation of any type usually taken as that amount which is measured by means of a rain gauge thus a small varying amount of direct condensation is included". Precipitation is the liquid water particles, either in the form of drops of more than 0.5 mm diameter or in the form of smaller widely scattered drops (Lal, 2002). The main source of precipitation is the 'Rain', which generates when separate drops of water fall to the earth's surface from the atmosphere (clouds).

The amount of raindrop is measured using a rain gauge. It is expressed as the depth of water that collects on a flat surface, and is measured with accuracy up to 1,000,000 cloud droplets are equal to 1 drop of rain that is falling down to the ground surface. The clouds have sometimes to do with rain too. Singh (2009) remarked that the small raindrops less than about 2 mm diameters are approximately spherical. As they get larger to about 5 mm diameter they become nut shape beyond 5 mm, they

## Rainfall data of Saharanpur region for the period from 1959-2008, values are recorded in mm

| S. No.   | Year | Jan     | Feb            | Mar     | Apr     | May      | Jun            | Jul      | Aug             | Sep     | Oct     | Nov    | Dec            | Total (mm)       |
|----------|------|---------|----------------|---------|---------|----------|----------------|----------|-----------------|---------|---------|--------|----------------|------------------|
| 1        | 1959 | 82.90   | 4.30           | 11.50   | -       | 10.00    | 44.20          | 546.30   | 539.80          | 234.60  | 44.20   | 25.40  | 25.40          | 1568.60          |
| 2        | 1960 | 52.00   | 45.40          | 4.60    | -       | -        | 224.30         | 429.60   | 285.90          | 129.10  | 28.70   | -      | 10.00          | 1209.60          |
| 3        | 1961 | 171.50  | 47.00          | -       | 25.40   | 8.30     | 157.20         | 537.40   | 525.60          | 82.00   | 80.50   | -      | 25.00          | 1659.90          |
| 4        | 1962 | 111.90  | 76.80          | 40.60   | -       | -        | 44.90          | 331.40   | 160.20          | 254.50  | -       | 33.80  | 38.20          | 1092.30          |
| 5        | 1963 | 22.30   | 21.00          | 4.90    | -       | 15.70    | 71.60          | 208.20   | 518.80          | 251.70  | 0.50    | 15.80  | 9.40           | 1139.90          |
| 6        | 1964 | 23.50   | 1.50           | 7.60    | 0.50    | 50.70    | 50.10          | 825.70   | 417.10          | 349.00  | -       | -      | 16.30          | 1742.00          |
| 7        | 1965 | 59.90   | 97.00          | 32.30   | 22.00   | 76.95    | -              | 564.30   | 226.10          | 10.20   | 49.00   | -      | 2.30           | 1140.05          |
| 8        | 1966 | 4.10    | 21.80          | 16.30   | 0.80    | 57.70    | 188.00         | 523.00   | 489.50          | 93.40   | 25.00   | -      | 15.20          | 1434.80          |
| 9        | 1967 | -       | 0.80           | 97.00   | 0.50    | 5.60     | 8.70           | 338.50   | 648.30          | 38.10   | 30.70   | 10.40  | 24.40          | 1203.00          |
| 10       | 1968 | 34.00   | 18.00          | 28.60   | -       | 1.00     | 146.30         | 594.50   | 331.10          | 103.40  | 13.60   | -      | 20.80          | 1291.30          |
| 11       | 1969 | 9.60    | 17.60          | 29.80   | 14.50   | 6.50     | 8.60           | 283.30   | 341.60          | 166.20  | -       | -      | -              | 877.70           |
| 12       | 1970 | 83.20   | 21.20          | 5.60    | 8.20    | 27.80    | 173.90         | 92.00    | 254.50          | 134.40  | 1.80    | -      | -              | 802.60           |
| 13       | 1971 | 15.60   | 18.10          | -       | 23.00   | 68.20    | 204.90         | 386.70   | 405.30          | 125.60  | 55.00   | -      | -              | 1302.40          |
| 14       | 1972 | 23.00   | 63.00          | _       | 35.50   | -        | 209.50         | 121.30   | 117.00          | 126.70  | 2.60    | 24.40  | 14.20          | 737.20           |
| 15       | 1973 | 20.00   | 14.01          | _       | -       | 15.30    | 507.10         | 466.20   | 31.00           | 31.70   | 137.50  | -      | 18.00          | 1240.81          |
| 16       | 1974 | 6.50    | _              | -       | -       | 24.70    | 62.90          | 405.60   | 91.80           | 12.00   | 12.50   | -      | 63.60          | 679.60           |
| 17       | 1975 | 47.20   | 23.40          | 13.80   | 7.50    |          | 237.20         | 412.00   | 253.70          | 191.30  | 31.00   | -      | _              | 1217.10          |
| 18       | 1976 | 17.30   | 46.80          | 18.30   | 1.50    | 32.50    | 107.50         | 449 50   | 516 50          | 40.50   | -       | -      | -              | 1230.40          |
| 19       | 1977 | 40.50   | -              | -       | 20.00   | 7 50     | 309.20         | 522.70   | 182.70          | 227.00  | 20.00   | -      | 57 50          | 1387 10          |
| 20       | 1978 | -       | 80.60          | 150.00  | 8.00    | -        | 195.80         | 437.20   | 999.00          | 390.00  | _0.00   | 2 00   | -              | 2262.60          |
| 21       | 1979 | 27.10   | 99.70          | 14 00   | 12 50   | 55 30    | 136.20         | 344 50   | 62.80           | 40.40   | 58 40   | -      | 29.90          | 822.40           |
| 22       | 1980 | 27.10   | 11 40          | 11.60   | 4 40    | 67.40    | 148 80         | 360.90   | 272 70          | 47.60   | 57.20   | 47 20  | 42.40          | 1095 20          |
| 23       | 1981 | 44.80   | 3 40           | 60.00   | 19.80   | 15.60    | 28 70          | 348.60   | 62 40           | 36.00   | 3 30    |        | 6.00           | 682 50           |
| 23       | 1982 | 68.40   | 68.90          | 69.00   | 61.50   | 51.00    | 20.70<br>48.80 | 168 30   | 254.20          | 6.90    | 4.80    | 0.90   | 59.40          | 810.50           |
| 25       | 1982 | 102.40  | 23 50          | 7 20    | 124.10  | 31.60    | 48.30          | 607.80   | 136.90          | 59.60   | 4.00    | 0.90   | 8 20           | 1454.60          |
| 25       | 108/ | 50.40   | 115.40         | 7.20    | 3.80    | 51.00    | 280.00         | 307.50   | 251.30          | 18 40   | 154.00  | -      | 0.20           | 1074.80          |
| 20       | 1085 | 11 20   | 115.40         | 1.00    | 21.20   | 1.40     | 209.00         | 208.00   | 188.30          | 130.20  | 12 50   | -      | -<br>50.60     | 055.00           |
| 27       | 1905 | 11.20   | -              | 12.50   | 10.20   | 78.10    | 110.70         | 198.00   | 217.00          | 119.20  | 0.40    | -      | 27.40          | 955.00<br>805.40 |
| 20       | 1980 | 27.80   | 89.00<br>27.40 | 25.20   | 10.20   | 112.10   | 85 40          | 64 70    | 217.90<br>44.60 | 110.20  | 0.40    | 19.00  | 37.40<br>11.40 | 407.70           |
| 29       | 1907 | 27.60   | 37.40          | 23.30   | 2.00    | 22.20    | 84.00          | 502.00   | 502.50          | 261.20  | -       | -      | 71.50          | 497.70           |
| 21       | 1988 | 0.00    | 25.00          | 81.50   | 2.00    | 15.00    | 64.00<br>59.50 | 229.50   | 502.50          | 201.20  | -       | -      | /1.30          | 1215.00          |
| 22       | 1989 | /6.00   | 25.00          | 8.00    | 1.50    | 15.00    | 22.00          | 328.50   | 276.50          | 80.50   | 16.00   | 20.50  | 98.00          | 1215.00          |
| 32       | 1990 | -       | 29.50          | 21.90   | 15.50   | 20.00    | 25.00          | 45.00    | 370.30          | 124.00  | -       | 12.00  | 20.50          | (12.20           |
| 33<br>24 | 1991 | -       | 38.50          | 21.80   | 15.50   | 8.50     | 105.70         | 202.10   | 132.50          | 134.00  | -       | -      | 39.50          | 012.20           |
| 34       | 1992 | 42.00   | 47.00          | 4.50    | 9.20    | 0.20     | 21.50          | 302.10   | 617.30          | //./0   | -       | 10.40  | -              | 1131.90          |
| 35       | 1993 | 56.10   | 34.50          | /3.50   | -       | 32.50    | /3./0          | 384.20   | 3/2.60          | 3/2.60  | -       | 30.00  | -              | 1429.70          |
| 56       | 1994 | 48.00   | 42.50          | 10.00   | 49.00   | 21.80    | 106.10         | 457.90   | 291.50          | 80.50   | -       | -      | 0.58           | 1107.88          |
| 3/       | 1995 | 48.50   | 64.50          | 11.00   | 12.00   | -        | 98.00          | 422.00   | 492.00          | 159.50  | 0.50    | 1.00   | -              | 1309.00          |
| 38       | 1996 | 24.00   | /9.00          | 24.00   | 2.50    | 10.50    | 159.00         | 24.50    | 3/90.00         | 150.50  | 93.50   | -      | -              | 4357.50          |
| 39       | 1997 | 18.50   | 1.00           | 4.00    | 127.50  | 13.50    | 64.00          | 582.50   | 100.00          | 164.50  | 43.00   | 40.50  | 83.50          | 1242.50          |
| 40       | 1998 | 2.50    | 25.00          | 10.50   | 39.50   | 42.50    | 168.00         | 315.00   | 242.00          | 139.00  | 132.50  | -      | -              | 1116.50          |
| 41       | 1999 | 77.50   | 30.00          | 9.00    | -       | 22.50    | 81.50          | 320.50   | 363.00          | 250.00  | -       | -      | 3.00           | 1157.00          |
| 42       | 2000 | 40.00   | 65.00          | 26.00   | 38.00   | 29.50    | 29.50          | 315.00   | 220.00          | 13.00   | -       | -      | -              | 776.00           |
| 43       | 2001 | 16.00   | 2.00           | 30.50   | 16.50   | 72.50    | 274.00         | 441.00   | 168.00          | 2.00    | 2.00    | 1.00   | 5.00           | 1030.50          |
| 44       | 2002 | 27.50   | 110.50         | 4.00    | 23.00   | 15.00    | 166.50         | 183.50   | 194.50          | 287.50  | 10.00   |        | 0.50           | 1022.50          |
| 45       | 2003 | 70.50   | 37.50          | -       | 12.50   | 7.00     | 81.20          | 312.00   | 209.00          | 109.00  | -       | 8.00   | 12.00          | 858.70           |
| 46       | 2004 | 83.00   | -              | 67.00   | 19.00   | 70.50    | 299.50         | 168.50   | 42.00           | 48.50   | 5.50    | 0.50   | 804.00         | 1608.00          |
| 47       | 2005 | 42.50   | 31.50          | 79.50   | 2.00    | 1.00     | 463.00         | 277.00   | 102.00          | 441.00  | -       | -      | -              | 1439.50          |
| 48       | 2006 | 10.50   | -              | 58.00   | 0.50    | 136.00   | 129.50         | 351.80   | 61.50           | 42.70   | 27.00   | -      | 10.00          | 827.50           |
| 49       | 2007 | -       | 114.50         | 53.00   | 11.60   | 35.00    | 258.00         | 221.00   | 134.00          | 134.00  | -       | -      | 4.00           | 965.10           |
| 50       | 2008 | 11.00   | 1.00           | -       | 15.00   | 26.00    | 400.00         | 232.00   | 292.00          | 111.00  | 24.00   | 17.20  | -              | 1129.20          |
|          |      | 1926.20 | 2015.32        | 1302.20 | 897.878 | 1456.758 | 7225.714       | 17816.65 | 18699.66        | 7045.85 | 1214.92 | 337.47 | 1882.99        | 60493.84         |

Annual Average Rainfall = 1209.8



Fig. 1. Average monthly rainfall of Saharanpur region during 1959 to 2008



Fig. 2. Total rainfall of Saharanpur region during 1959 to 2008

become unstable and fragmented. On average the diameter of raindrops is 1 mm to 2 mm, and the biggest raindrops on the earth are resulted due to condensation of large smoke particles or by collisions between drops in small regions with particularly high content of liquid water. Rainfall is commonly measured with the help of rain gauge and the values are expressed in millimeter or inches. The rain gauges are mainly classified into two categories - (a) Non-recording type rain gauge and (b) Recording type rain gauge. The rainfall shows variation from place to place, even during a period of single storm. The period of rainfall record may be a minute, an hour, a day, a month or a year. The affecting factors of rainfall intensity are involved in all measurements and the period is expressed by the term annual, monthly, daily or hourly precipitation. The rate of rainfall is noted from the computation for a particular day or multiple numbers of days from the records of daily reading of standard gauge. The storage gauges are used for long-term measurements.

#### 2. Rainfall data analysis of study area

The rainfall data of Saharanpur area for a period of 50 years covering 1959 to 2008 (Table 1, Figure 2) have been collected from Meteorological Department, Muzafarrabad, Saharanpur district and analyzed by using both mathematical and statistical techniques of data analysis. The arithmetical procedure involves the determination of average rainfall for a specific period. The

## Time series analysis of rainfall data of Saharanpur region during 1960 – 2008

| S. No. | Year | x            | у                   | <i>x</i> <sup>2</sup> | xy                    | <i>x</i> <sup>3</sup> | $x^2y$                     | $x^4$                   | Trend value |
|--------|------|--------------|---------------------|-----------------------|-----------------------|-----------------------|----------------------------|-------------------------|-------------|
| 1      | 1960 | -24          | 1209.6              | 576                   | -29030.4              | -13824                | 696729.6                   | 331776                  | 936.928     |
| 2      | 1961 | -23          | 1659.9              | 529                   | -38177.7              | -12167                | 878087.1                   | 279841                  | 947.989     |
| 3      | 1962 | -22          | 1092.3              | 484                   | -24030.6              | -10648                | 528673.2                   | 234256                  | 959.05      |
| 4      | 1963 | -21          | 1139.9              | 441                   | -23937.9              | -9261                 | 502695.9                   | 194481                  | 970.111     |
| 5      | 1964 | -20          | 1742                | 400                   | -34840                | -8000                 | 696800                     | 160000                  | 981.172     |
| 6      | 1965 | -19          | 1140.05             | 361                   | -21660.95             | -6859                 | 411558.05                  | 130321                  | 992.233     |
| 7      | 1966 | -18          | 1434.8              | 324                   | -2606.4               | -5832                 | 464875.2                   | 104976                  | 1003.294    |
| 8      | 1967 | -17          | 1203                | 289                   | -20451                | -4913                 | 347667                     | 83521                   | 1014.355    |
| 9      | 1968 | -16          | 1291.3              | 256                   | -20660.8              | -4096                 | 330572.8                   | 65536                   | 1025.416    |
| 10     | 1969 | -15          | 877.7               | 225                   | -13165.5              | -3375                 | 197482.5                   | 50625                   | 1036.477    |
| 11     | 1970 | -14          | 802.6               | 196                   | -11236.4              | -2744                 | 157309.6                   | 38416                   | 1047.538    |
| 12     | 1971 | -13          | 1302.4              | 169                   | -16931.2              | -2197                 | 220105.6                   | 28561                   | 1058.599    |
| 13     | 1972 | -12          | 737.2               | 144                   | -8846.4               | -1728                 | 106156.8                   | 20736                   | 1069.66     |
| 14     | 1973 | -11          | 1240.81             | 121                   | -13648.91             | -1331                 | 150138.01                  | 14641                   | 1080.721    |
| 15     | 1974 | -10          | 679.6               | 100                   | -6796                 | -1000                 | 67960                      | 10000                   | 1091.782    |
| 16     | 1975 | -9           | 1217.1              | 81                    | -10953.9              | -729                  | 98585.1                    | 6961                    | 1102.843    |
| 17     | 1976 | -8           | 1230.4              | 64                    | -9843.2               | -812                  | 787456                     | 4096                    | 1113.904    |
| 18     | 1977 | -7           | 1387.1              | 49                    | -9709.7               | -343                  | 67967.9                    | 2401                    | 1124.965    |
| 19     | 1978 | -6           | 2262.6              | 36                    | -13575.6              | -216                  | 81453.6                    | 1296                    | 1136.026    |
| 20     | 1979 | -5           | 822.4               | 25                    | -4112                 | -125                  | 20560                      | 625                     | 1147.087    |
| 21     | 1980 | -4           | 1095.2              | 16                    | -4380.8               | -64                   | 17523.2                    | 256                     | 1158.148    |
| 22     | 1981 | -3           | 682.5               | 9                     | -2047.5               | -27                   | 6142.5                     | 81                      | 1169.209    |
| 23     | 1982 | -2           | 810.5               | 4                     | -1621                 | -8                    | 3242                       | 16                      | 1180.27     |
| 24     | 1983 | -1           | 1454.6              | 1                     | -1454.6               | -1                    | 1454.6                     | 1                       | 1191.331    |
| 25     | 1984 | 0            | 1074.8              | 0                     | 0                     | 0                     | 0                          | 0                       | 1202.392    |
| 26     | 1985 | 1            | 955                 | 1                     | 955                   | 1                     | 955                        | 1                       | 1213.453    |
| 27     | 1986 | 2            | 895.4               | 4                     | 1790.8                | 8                     | 35816                      | 16                      | 1224.514    |
| 28     | 1987 | 3            | 497.7               | 9                     | 1493.1                | 27                    | 4479.3                     | 81                      | 1235.575    |
| 29     | 1988 | 4            | 1566.1              | 16                    | 6264.4                | 64                    | 25057.6                    | 256                     | 1246.636    |
| 30     | 1989 | 5            | 1215                | 25                    | 6075                  | 125                   | 30375                      | 625                     | 1257.697    |
| 31     | 1990 | 6            | 1084.5              | 36                    | 6507                  | 216                   | 39042                      | 1296                    | 1268.758    |
| 32     | 1991 | 7            | 612.2               | 49                    | 4285.4                | 343                   | 29997.8                    | 2401                    | 1279.819    |
| 33     | 1992 | 8            | 1131.9              | 64                    | 90552                 | 812                   | 72441.6                    | 4096                    | 1290.88     |
| 34     | 1993 | 9            | 1429.7              | 81                    | 12867.3               | 729                   | 115805.7                   | 6961                    | 1301.941    |
| 35     | 1994 | 10           | 1107.88             | 100                   | 11078.8               | 1000                  | 110788                     | 10000                   | 1313.002    |
| 36     | 1995 | 11           | 1309                | 121                   | 14399                 | 1331                  | 158389                     | 14641                   | 1324.063    |
| 37     | 1996 | 12           | 4357.5              | 144                   | 52290                 | 1728                  | 627480                     | 20736                   | 1202.392    |
| 38     | 1997 | 13           | 1242.5              | 169                   | 16152.5               | 2197                  | 209982.5                   | 28561                   | 1346.185    |
| 39     | 1998 | 14           | 1116.5              | 196                   | 15631                 | 2744                  | 218834                     | 38416                   | 1357.246    |
| 40     | 1999 | 15           | 1154                | 225                   | 17310                 | 3375                  | 259650                     | 50625                   | 1368.307    |
| 41     | 2000 | 16           | 771                 | 256                   | 12336                 | 4096                  | 197376                     | 65536                   | 1379.368    |
| 42     | 2001 | 17           | 1030.5              | 289                   | 17518.5               | 4913                  | 297814.5                   | 83521                   | 1390.429    |
| 43     | 2002 | 18           | 1022.5              | 324                   | 18405                 | 5832                  | 331290                     | 104976                  | 1401.49     |
| 44     | 2003 | 19           | 858.7               | 361                   | 16315.3               | 6859                  | 309990.7                   | 130321                  | 1412.551    |
| 45     | 2004 | 20           | 1608                | 400                   | 32160                 | 8000                  | 643200                     | 160000                  | 1423.612    |
| 46     | 2005 | 21           | 1439.5              | 441                   | 30229.5               | 9261                  | 634819.5                   | 194481                  | 1434.673    |
| 47     | 2006 | 22           | 827.5               | 484                   | 18205                 | 10648                 | 400510                     | 234256                  | 1445.734    |
| 48     | 2007 | 23           | 965.1               | 529                   | 22197.3               | 12167                 | 510537.9                   | 2/9841                  | 1456.795    |
| 49     | 2008 | 24           | 1129.2              | 5/6                   | 2/100.8               | 13824                 | 650419.2                   | 3317/6                  | 1467.856    |
|        |      | $\sum x = 0$ | $\sum y = 58917.24$ | $\sum x^2 = 9800$     | $\sum xy = 108400.24$ | $\sum x^3 = 0$        | $\sum x^2 y = 12756247.56$ | $\sum x^4 = 3526840.00$ |             |

| Annual rainfall its departure and sumulative de | norturo from ovorogo onnuo | l rainfall in Saharannur during | 1050_2008  |
|-------------------------------------------------|----------------------------|---------------------------------|------------|
| Annual fannan, its ucparture and cumulative u   | parture from average annua | i ramian m Sanaranpur uurma     | 51757-2000 |

| S. No.  | Year | Total rainfall (mm) | Departure from average rainfall | Cumulative Departure from average rainfall |
|---------|------|---------------------|---------------------------------|--------------------------------------------|
| 1       | 1959 | 1568.6              | 358.8                           | 358.8                                      |
| 2       | 1960 | 1209.6              | -0.2                            | 358.6                                      |
| 3       | 1961 | 1659.9              | 450.1                           | 808.7                                      |
| 4       | 1962 | 1092.3              | -117.5                          | 691.2                                      |
| 5       | 1963 | 1139.9              | -69.9                           | 621.3                                      |
| 6       | 1964 | 1742                | 532.2                           | 1153.5                                     |
| 7       | 1965 | 1140.05             | -69.75                          | 1083.75                                    |
| 8       | 1966 | 1434.8              | 225                             | 1308.75                                    |
| 9       | 1967 | 1203                | -6.8                            | 1301.95                                    |
| 10      | 1968 | 1291.3              | 81.5                            | 1383.45                                    |
| 11      | 1969 | 877.7               | -332.1                          | 1051.35                                    |
| 12      | 1970 | 802.6               | -407.2                          | 644.15                                     |
| 13      | 1971 | 1302.4              | 92.6                            | 736.75                                     |
| 14      | 1972 | 737.2               | -472.6                          | 264.15                                     |
| 15      | 1973 | 1240.81             | 31.01                           | 295.16                                     |
| 16      | 1974 | 679.6               | -530.2                          | 235.04                                     |
| 17      | 1975 | 1217.1              | 7.3                             | 227.74                                     |
| 18      | 1976 | 1230.4              | 20.6                            | 207.14                                     |
| 19      | 1977 | 1387.1              | 177.3                           | 29.84                                      |
| 20      | 1978 | 2262.6              | 1052.8                          | 1022.96                                    |
| 21      | 1979 | 822.4               | -387.4                          | 635.56                                     |
| 22      | 1980 | 1095.2              | -114.6                          | 520.96                                     |
| 23      | 1981 | 682.5               | -527.3                          | 6.34                                       |
| 24      | 1982 | 810.5               | -399.3                          | 405.64                                     |
| 25      | 1983 | 1454.6              | 244.8                           | 160.84                                     |
| 26      | 1984 | 1074.8              | -135                            | 295.84                                     |
| 27      | 1985 | 955                 | -254.8                          | 550.64                                     |
| 28      | 1986 | 895.4               | -314.4                          | 865.04                                     |
| 29      | 1987 | 497.7               | -712.1                          | 1577.14                                    |
| 30      | 1988 | 1566.1              | 356.3                           | 1220.84                                    |
| 31      | 1989 | 1215                | 5.2                             | 1215.64                                    |
| 32      | 1990 | 1084.5              | -125.3                          | 1340.94                                    |
| 33      | 1991 | 612.2               | -597.6                          | 1938.54                                    |
| 34      | 1992 | 1131.9              | -77.9                           | 2016.44                                    |
| 35      | 1993 | 1429.7              | 219.9                           | 1796.54                                    |
| 36      | 1994 | 1107.88             | -101.92                         | 1897.74                                    |
| 37      | 1995 | 1309                | 99.2                            | 1798.54                                    |
| 38      | 1996 | 4357.5              | 3147.7                          | 1349.16                                    |
| 39      | 1997 | 1242.5              | 32.7                            | 1381.86                                    |
| 40      | 1998 | 1116.5              | -93.3                           | 1288.56                                    |
| 41      | 1999 | 1154                | -55.8                           | 1232.76                                    |
| 42      | 2000 | 776                 | -433.8                          | 798.96                                     |
| 43      | 2001 | 1030.5              | -179.3                          | 619.66                                     |
| 44      | 2002 | 1022.5              | -187.3                          | 432.36                                     |
| 45      | 2003 | 858.7               | -351.1                          | 81.26                                      |
| 46      | 2004 | 1608                | 398.2                           | 479.46                                     |
| 47      | 2005 | 1439.5              | 229.7                           | 709.16                                     |
| 48      | 2006 | 827.5               | -382.3                          | 326.86                                     |
| 49      | 2007 | 965.1               | -244.7                          | 82.16                                      |
| 50      | 2008 | 1129.2              | -80.6                           | 1.66                                       |
| Total   |      | 60490.84            | 0.84                            |                                            |
| Average |      | 1209.8              | · · · · ·                       |                                            |

Computed average monthly and seasonal rainfall of Saharanpur region

| Season  | Months    | Mean monthly rainfall (mm) | Average seasonal rainfall (mm) |
|---------|-----------|----------------------------|--------------------------------|
|         | July      | 349.35                     |                                |
|         | August    | 366.66                     |                                |
| Monsoon | September | 138.15                     | 222.745                        |
|         | October   | 36.82                      |                                |
|         | November  | 16.87                      |                                |
|         | December  | 52.31                      |                                |
| Winter  | January   | 42.8                       | 38.947                         |
|         | February  | 43.81                      |                                |
|         | March     | 31                         |                                |
|         | April     | 21.38                      |                                |
| Summer  | May       | 33.11                      | 57.5                           |
|         | June      | 144.51                     |                                |
| Total   |           | 1276.77                    |                                |

departure of rainfall from the average annual rainfall determines the rainfall pattern. The determination of cumulative departure of rainfall provides the information regarding the total departure of rainfall from the mean value over a specific period. The commonly used procedures of statistical analysis as followed by Gupta and Kapoor (1985) and Davis (2002) have been followed herein. The computation of statistical parameters includes mean, median, mode, dispersion, standard deviation, and coefficient of variation. Based on time series analysis (Croxten *et al.*, 1988), the prediction of future rainfall trend has been visualized.

#### 3. Mathematical method

The mathematical method is most commonly used, which involves calculation of the average rainfall of years or months as shown by the arithmetic mean of the period of years or months. For this a suitable mean is required to show the variability of the rainfall. A record of 25 to 50 years is required for rainfall data analysis. The mean of a particular distribution is mostly affected by the extreme values and, therefore, it is necessary to calculate the median rainfall in the analysis of arithmetic average.

The total monthly and seasonal rainfall data of Saharanpur have been recorded (Table 4). The trend of monthly rainfall record for a period of 50 years has been exhibited (Fig. 1), whereas the monsoon seasonal variations have been demonstrated to observe the nature of rainfall fluctuation pattern (Fig. 4). The maximum precipitation in last fifty years was recorded as 4357.5 mm during the year of 1996 and minimum rainfall of 497.70 mm was noted in the year of 1987. The average rainfall of the study area has been calculated to be 1209.8 mm. The departure and cumulative departure from the average rainfall of the study areas has been displayed (Table 3, Figs. 3 and 4).

The trend of annual departure from the computed value of average annual rainfall (Table 3, Figs. 3 and 4) reveals that years showing annual departure more than the average annual rainfall were - 1959, 1961, 1964, 1966, 1968, 1971, 1973, 1975, 1976, 1977, 1978, 1983, 1988, 1989, 1993, 1995, 1996, 1997, 2004 and 2005. Years showing annual departure less than the average annual rainfall were - 1960, 1962, 1963, 1965, 1967, 1969, 1970, 1972, 1974, 1979, 1980, 1981, 1982, 1983, 1984, 1985, 1986, 1987, 1990, 1991, 1992, 1994, 1998, 1999, 2000, 2001, 2002, 2003, 2006, 2007 and 2008.

## 4. Statistical method

The statistical method employed for the analysis of rainfall data of study area for the period from 1959 to 2008, includes determinations of central tendencies (mean, median and mode), skewness, dispersion, kurtosis and time series analysis (Table 5). The procedure of determination of statistical parameters is described below.

#### 5. Time series analysis

The time series analysis generates valuable information regarding the trend of a series of observations. It helps to measure the deviation from the trend and also provides information pertaining to the nature of trend. This analysis is used as a tool to forecast



Fig. 3. Cumulative departure of average rainfall (mm) of Saharanpur region



Fig. 4. Departure from average rainfall (mm.) of Saharanpur region

Statistical parameter determination of rainfall of Saharanpur region

| Class interval | Mid value $(x)$ | Frequency (f) | fx                | d = x - 1100/200 | fd              | $fd^2$             | $d^2$           | Cumulative frequency |
|----------------|-----------------|---------------|-------------------|------------------|-----------------|--------------------|-----------------|----------------------|
| 400-600        | 500             | 1             | 500               | -3               | -3              | 9                  | 9               | 1                    |
| 600-800        | 700             | 5             | 3500              | -2               | -10             | 20                 | 4               | 6                    |
| 800-1000       | 900             | 9             | 8100              | -1               | -9              | 9                  | 1               | 15                   |
| 1000-1200      | 1100            | 13            | 14300             | 0                | 0               | 0                  | 0               | 28                   |
| 1200-1400      | 1300            | 11            | 14300             | 1                | 11              | 11                 | 1               | 39                   |
| 1400-1600      | 1500            | 6             | 9000              | 2                | 12              | 24                 | 4               | 45                   |
| 1600-1800      | 1700            | 5             | 8500              | 3                | 15              | 45                 | 9               | 50                   |
| Total          | 7700            | $\sum f = 50$ | $\sum fx = 58200$ | $\sum d = 0$     | $\sum fd = +16$ | $\sum fd^2 = +118$ | $\sum d^2 = 28$ |                      |

Computation of statistical parameters of rainfall data of the Saharanpur

| Statistical parameter     | Formula                                                       | Computed value |
|---------------------------|---------------------------------------------------------------|----------------|
| Mean                      | $\overline{x} = \frac{\sum x}{N}$                             | 1164 mm        |
| Median                    | i + i/f (N/2-C)                                               | 1153.8 mm      |
| Mode                      | $i + [i(f_1-f_0)] / [2f_1-f_0-f_2]$                           | 1066.67 mm     |
| Standard Deviation        | $\sigma = 200\sqrt{1/N\sum fd^2 - \left(1/N\sum fd\right)^2}$ | 300            |
| Coefficient of Dispersion | Standard Deviation/ Mean                                      | 0.2577         |
| Coefficient of Variation  | 100 × (Standard Deviation / mean)                             | 25.773         |
| Coefficient of Skewness   | (mean-mode) / Standard deviation                              | 0.3244         |

the future behavior of the trend. The method of least square fit of straight line has been used for performing the trend analysis of the behavior of annual rainfall. The straight-line equation can be represented as

Where  $y_c = a + bc$ 

 $y_c$  = Trend value of dependent variable

x = Independent variable

a and b = unknown

To establish a best fit straight line the values of a and b must be determined from the observed data. Simultaneous solving of two normal equations does this.

$$\sum y = Na + b \sum x \tag{1}$$

$$\sum xy = a\sum x + b\sum x^2 \tag{2}$$

The values of the various elements in the above equations have been determined by considering y as variable (annual rainfall) and x as constant (year). The determinations were made as per the procedure described below.

$$N = 50 \qquad \sum x = 0 \qquad \sum y = 58917.24$$
$$\sum x^{2} = 9800 \qquad \sum xy = 108400.24$$

Substituting these valued in normal equation (1) & (2), two equations (3) & (4) in terms of a and b are developed

$$58917.24 = 50 a + 0 \tag{3}$$

$$108400.24 = 0 + b \ 9800 \tag{4}$$

Solving equations (3) & (4) the values of a & b are obtained as 1178.34 and 11.06 respectively. Hence a equation of straight line is developed, which can be written as

$$i/c = 1178.34 + 11.06x \tag{5}$$

With the help of equation (5) the trend values have been calculated (Table 7). The future forecast of rainfall amount for period of ten years from 2009 to 2018 has been made.

### 6. Interpretation of rain fall data

The average rainfall of the Saharanpur area has been calculated and found to be 1276.77 mm. The departure and cumulative departure from the average rainfall of the area under investigation is given in Table 3. The graph (Fig. 4) showing the departure from average rainfall shows that during the year of 1959, 1961, 1964, 1966, 1968, 1971, 1973, 1975, 1976, 1977, 1978, 1983, 1988, 1989, 1993, 1995, 1996, 1997, 2004 and 2005. The rainfall was more than the average. Hence, these years were favorable for groundwater recharge. The graph showing cumulative departure from average rainfall (Fig. 3) reveals that the maximum peak occurred during

| -      |      |                           | Sumu unpui            |
|--------|------|---------------------------|-----------------------|
| S. No. | Year | Procedure of determinates | Expected future trend |
| 1.     | 2009 | 1202.392 + 11.061(25)     | 1478.917 mm           |
| 2.     | 2010 | 1202.392 + 11.061(26)     | 1489.978 mm           |
| 3.     | 2011 | 1202.392 + 11.061(27)     | 1501.039 mm           |
| 4.     | 2012 | 1202.392 + 11.061(28)     | 1512.10 mm            |
| 5.     | 2013 | 1202.392 + 11.061(29)     | 1523.161 mm           |
| 6.     | 2014 | 1202.392 + 11.061(30)     | 1534.222 mm           |
| 7.     | 2015 | 1202.392 + 11.061(31)     | 1545.283 mm           |
| 8.     | 2016 | 1202.392 + 11.061(32)     | 1556.344 mm           |
| 9.     | 2017 | 1202.392 + 11.061(33)     | 1567.405 mm           |
| 10.    | 2018 | 1202.392 + 11.061(34)     | 1578.466 mm           |

Determination of expected future trend of rainfall in Saharanpur

the years of 1960, 1962, 1963, 1965, 1967, 1969, 1970, 1972, 1974, 1979, 1980, 1981, 1982, 1983, 1984, 1985, 1986, 1987, 1990, 1991, 1992, 1994, 1998, 1999, 2000, 2001, 2002, 2003, 2006, 2007 and 2008.

These peaks are indicative of maximum rainfall during the corresponding periods and point out sufficient infiltration of water due to maximum rainfall. Statistical analysis of the present rainfall data reveals that the mean rainfall of the area is 1164 mm. The computed value of mode 1066.67 mm indicates ideal rainfall for the area. The calculated value of Standard Deviation reveals that deviation of rainfall is of 300 mm over a period of fifty years. The coefficient of variation indicates that the amount of rainfall varies up to 25.773. The coefficient of Skewness has been noted as 0.3244, which indicates negative trend.

#### 7. Environmental impacts of rainfall factor

Environment Impact Assessment (EIA) is concerned with the analysis of any possible alteration of environmental conditions, adverse or beneficial caused introduced by the action or set of actions under consideration. EIA is multifaceted human oriented and essentially seeks to know what will be the consequences of economic decisions for those human aspects and social development that depend on the economic, and the quality of human interaction with the natural and anthropogenic physical environment (Royston, 1978). The rainfall is one of the most important meteorological parameter that acts as a main source for the recharge of ground water system besides other environmental impacts. The variation analysis of rainfall data of Saharanpur region reveals a

fairly good range of variation indicating the positive trend before 2000 and negative trend from 2000 onwards that is resulting into depletion of ground water levels. The present trend of over exploitation due to population growth, industrialization, irrigation and lesser rainfall than the annual average value are affecting the recharge of ground water levels, which are depleting at an alarming rate. The depletion of ground water levels may be assigned to seasonal variations in the static ground water levels, which are influenced by infiltration of rainwater and extraction of ground water (Singh, 2009). The implementation of an appropriate strategy for rainwater harvesting will generate the possibilities of increase in the amount and intensities of rainfall that in turn, will improve the augmentation phenomena of ground water reservoir. The control over depleting trend of ground water level will provide remedy of sustained water supply to the inhabitants of Saharanpur region.

#### 8. Conclusion

The rainfall data analysis of Saharanpur region for a period of 50 years from 1959 to 2008 reveals variation in the amount and frequency and points out a negative trend of rainfall in future as well. It is suggested that the optimum development of rainwater harvesting will provide remedial solution to the prevailing problem of shortage of water supply in Saharanpur region. The augmentation of ground water reservoir by increasing the rainwater harvesting, implementation of scheme for a forestation and conservation of rainwater by construction of artificial structures would help to cater the demand of water supply.

#### Acknowledgement

The appreciation is recorded to Dr. Vinod Kumar Panchal, Scientist 'G' in Defence Research and Development Organization, for their generous guidance. Sincere thanks are expressed to Shri R. P. Singh and Shri R. N. Yadav, for their kind assistance.

#### References

- Croxten, F. E., Cowden, D. J. and Klein, S., 1988, "Applied General Statistics", Prentice-Hall India, Pvt.Ltd., New Delhi, p754.
- Davis, J. C., 2002, "Statistic and Data Analysis in Geology", John Wiley and Sons, New York, 638 p.
- Gupta, S. C. and Kapoor, V. K., 1985, "Fundamental of Mathematical Statistics", Sultan Chand and Sons, New Delhi, 1100 p.

- Lal, D. S., 2002, "Climatology", Sharda Pustak Bhawan, Allahabad, p416.
- Navarra, J. G., 1979, "Atmosphere weather and climate, An introduction to meteorology", W.B. Saundrees Co Philadelphia, U.S.A., p519.
- Royston, M. G., 1978, "Environmental impact assessment. In: Managing the environment", *Indian Environmental Society*, New Delhi. 5-22.
- Singh, V. and Dev, P., 2009, "Rainfall Variation Analysis and Future Trend in Saharanpur District-Environmental Context. Indian Journal Environmental Protection", 29, 8, 710-718.
- Singh, V., 2009, "Remote Sensing Data Based Hydrogeoenvironmental Modelling of Saharanpur Region", Western Uttar Pradesh. Unpublished Ph.D. Thesis, Vikram University, Ujjain, p264.