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lkj & m/okZ/kj lkanz.k forj.k dh izFke pkj fLFkfr;ksa ¼dsanzd] Hksn] oS"kE; vkSj dVksZfll½ dks Kkr djus 

gsrq jSf[kd lzksr ds fy, folj.k lehdj.k ds fy, xkSfl;u lkWY;w’ku dk mi;ksx fd;k x;k gSA bles 
vf/kdre lkanz.k Lrj dh fLFkfr ,oa ifjek.k dh x.kuk dh xbZ gSA blesa fiPNd vfHkogu iou xfr dk Hkh 
vkdyu fd;k x;k gSA Hkwry Lrj lkanz.k ds lehdj.kksa dh rqyuk iou Vuy ekiuksa ls dh xbZ gSA 

 
ABSTRACT.  The Gaussian solution of the diffusion equation for line source is used to have the first four 

moments of the vertical concentration distribution (centroid, variance, skewness, and kurtosis). The magnitude and 
position of maximum concentration level were evaluated. Also the plume advection wind speed is estimated. Equations 
for the ground level concentration were compared with wind tunnel measurements. 
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1.    Introduction  
 

The modeling of dispersion has been performed by a 
Gaussian approach that takes account of atmospheric 
turbulence assuming simple formula for concentration 
distribution, in which the dispersion parameters depend on 
downwind distance and the Pasquill-Gifford scheme 
(Arya, 1999). The statistical description distribution for 
non Gaussian concentration model is studied by Brown         
et al. (1997). The moments and maximum ground level 
concentration in two dimensions are obtained by Tirabassi 
et al. (2009). 

  

 
In this paper, we derive the first four moments of the 

vertical concentration distribution from Gaussian plume 
model (Pasquill and smith 1984). Equations for the 
maximum ground level concentration along the centerline 
and its locations were calculated. The effective wind 
speed of a plume is derived. 
   
2. The Gaussian model 

     
One assumes that the turbulent mass flux can be 

described by a gradient-transfer closure. The steady-state 

diffusion equation can be written as (Pasquill and Smith, 
1984). 
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where x, y, and z are the longitudinal, lateral, and 

vertical directions, respectively, U  is the mean 

longitudinal wind speed, C  is the mean concentration, 
and are the lateral and vertical eddy diffusivities, 

respectively, and S is a sink or source term. The solution 
of equation (1) can be written as (Pasquilll (1974) : 

yK zK

 

 

































2

2

2
expexp

2

,,

y

s

y

y

z

Bz

Uz

A

Q

zyxC


 

(2)  
 

From this solution, one can estimate the 
concentration of a point source where, 

 
Q - Actual emission rate of the point source (μg/s). 

 (123) 
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y - Crosswind dispersion plume spread (m). 
 

U - Mean wind speed (m/s). 
 

z - Mean plume vertical height (m). 

s - Parameter depends on the stability.  
 
A, B - Parameters depend on the stability, where 

[Van Ulden (1978)].    ss /1//2B  
 
3. Moments of the Gaussian distribution 
 

The moments of centroid, the variance, skewness 
and kurtosis can be obtained from the following equation:  
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To measure the centroid z of the concentration 
distribution, put m = 1   and substituting from equation (2) 
in equation (3), we obtain that: 
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Using separation of variables and integrating 
equation (4), we obtain the centroid as follows: 
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hence 
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Where :      is - function.   
 
0

1 dxexp xp 

 

To measure the variance  of the concentration 

distribution, put m = 2, in equation (3) and substituting 
from equation (2) in equation (3), we obtain that: 
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Using separation of variables and integrating 
equation (6), we obtain the variance as follows: 
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To measure the skewness sk (x) of the concentration 
distribution, put m=3 in equation (3) and substituting from 
equation (2) in equation (3), to have: 
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Using separation of variables and integrating 

equation (8), we obtain the skewness as follows: 
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To measure the kurtosis "ku" of the concentration 
distribution, put m=4 in equation (3) and substituting from 
equation (2) in equation (3), we get: 
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Separating of variables and integrating eqn.(10), we obtain 
the kurtosis as follow : 
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Fig. 1.  Predicted centroid, variance,  skewness and kurtosis of the vertical concentration  distribution for near surface are compared 

with wind tunnel measured via downwind distance (Khurshudyan et al. 1981) 

 
 

 
4.  Maximum ground level concentration where  σv is the standard deviation of the crosswind 

velocity component.   
 

Substituting with z = 0 and 
U

xv
y


   in equation 

(2), to have: 

      To estimate the maximum downwind distance (x), 
differentiating the above equation with respect to x, setting 
the result equal to zero, and then solving for x, to get: 
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Putting 0



x

C , then the maximum downwind 

distance of (x) becomes: 
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Substituting from equation (14) in equation (12) to 

get the maximum ground level concentration "CGLCmax" by 
putting y = 0 as follows: 
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Dividing equation (12) by equation (15) to get the 

ratio between  and  as follows:  GLCC maxGLCC
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Fig. 1 Shows the computed centroid, variance, 

skewness, and kurtosis for surface that are compared with 
measurements made through wind tunnel in neutral 
stability ( Khurshudyan et al. 1981). Recall that skewness 
equal 0.7 and kurtosis equals 3 for reflected Gaussian 
distribution. The downwind variations of the measured 
centroid, variance, skewness and kurtosis agree well with 
model predictions. 
 
5. Calculating plume advection velocity 
 

The mean plume wind speed U  is defined as: 
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Where the wind speed is given as:  
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Fig. 2. Non–dimensional maximum ground level concentrations as 

function of non-dimensional downwind distance. Measurements 
include wind-tunnel experiments 

 
 
 

Where u* is the friction velocity, kv is von-Kaman 
constant = 0.4 and z0  is the roughness height (m). We 
substitute from equations (5), (18) in equation (17) to get 
the mean plume wind speed in the boundary layer: 
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 Fig. 2 shows a non-dimensional plot of ground level 
concentration and downwind distance for surface releases 
from neutral USEPA wind tunnel point source dispersion 
experiment (Brown et al. 1993). The figure illustrates 
ground level concentration by "GLCmax" [equation (16)] 
and the downwind distance "xmax" [equation (14)] have 
good agreement between the predicted and measured   
data. 
 
6. Conclusion 
       
 Equations of the centroid, variance, skewness, and 
kurtosis compared well with wind tunnel plume dispersion 
measurements. The equations derived for the magnitude 
and location of "GLCmax" were found to be agreement 
well with wind-tunnel measured data. Finally, equation of 
the plume advection velocity is derived.  
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