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ABSTRACT. The Gaussian solution of the diffusion equation for line source is used to have the first four
moments of the vertical concentration distribution (centroid, variance, skewness, and kurtosis). The magnitude and
position of maximum concentration level were evaluated. Also the plume advection wind speed is estimated. Equations
for the ground level concentration were compared with wind tunnel measurements.
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1. Introduction

The modeling of dispersion has been performed by a
Gaussian approach that takes account of atmospheric
turbulence assuming simple formula for concentration
distribution, in which the dispersion parameters depend on
downwind distance and the Pasquill-Gifford scheme
(Arya, 1999). The statistical description distribution for
non Gaussian concentration model is studied by Brown
et al. (1997). The moments and maximum ground level
concentration in two dimensions are obtained by Tirabassi
et al. (2009).

In this paper, we derive the first four moments of the
vertical concentration distribution from Gaussian plume
model (Pasquill and smith 1984). Equations for the
maximum ground level concentration along the centerline
and its locations were calculated. The effective wind
speed of a plume is derived.

2. The Gaussian model

One assumes that the turbulent mass flux can be
described by a gradient-transfer closure. The steady-state

diffusion equation can be written as (Pasquill and Smith,
1984).

vlc-9fk Lclsl KZiE +S (1)
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where X, Yy, and z are the longitudinal, lateral, and
vertical directions, respectively, U is the mean
longitudinal wind speed, C is the mean concentration,
Kyand K, are the lateral and vertical eddy diffusivities,

respectively, and S is a sink or source term. The solution
of equation (1) can be written as (Pasquilll (1974) :

C(x,y,2) A (szs y?
= —exp| —| = | |exp| —
Q V2o, U z 20'5
(2)
From this solution, one can estimate the

concentration of a point source where,

Q - Actual emission rate of the point source (pg/s).

(123)
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oy - Crosswind dispersion plume spread (m).
U - Mean wind speed (m/s).

7 - Mean plume vertical height (m).
S - Parameter depends on the stability.

A, B - Parameters depend on the stability, where
B=T(2/s)/T(1/s)[Van Ulden (1978)].

3.  Moments of the Gaussian distribution

The moments of centroid, the variance, skewness
and kurtosis can be obtained from the following equation:

G :f(z - E)m C(x,2)dz 5
dx TE(X, z)dz

0

To measure the centroid zof the concentration
distribution, put m = 1 and substituting from equation (2)
in equation (3), we obtain that:
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Using separation of variables and integrating

equation (4), we obtain the centroid as follows:

Hence,
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Where : 1"(p):J.gO xPe™ dx is I - function.

x+ In(z)

To measure the variance o2 (x) of the concentration

distribution, put m = 2, in equation (3) and substituting
from equation (2) in equation (3), we obtain that:
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(6)
Using separation of variables and integrating
equation (6), we obtain the variance as follows:
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To measure the skewness sk (X) of the concentration
distribution, put m=3 in equation (3) and substituting from

equation (2) in equation (3), to have:
© S 0 S
jz3 exp —(B_ZJ dZ—3ZIZZexp —(B_Z) dz
0 z 0 z
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dz _ 0 z 0 z
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Using separation of variables and integrating
equation (8), we obtain the skewness as follows:
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To measure the kurtosis "ku" of the concentration
distribution, put m=4 in equation (3) and substituting from

equation (2) in equation (3), we get:
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Separating of variables and integrating eqn.(10), we obtain
the kurtosis as follow :
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Fig. 1. Predicted centroid, variance, skewness and kurtosis of the vertical concentration distribution for near surface are compared
with wind tunnel measured via downwind distance (Khurshudyan et al. 1981)

4. Maximum ground level concentration

X
Substituting with z = 0 and o, = O-Ul in equation
(2), to have:
—2
A U
Colc = Q =exp| — y 53 (12)
V27mo, X2 207X

where oy is the standard deviation of the crosswind
velocity component.

To estimate the maximum downwind distance (X),
differentiating the above equation with respect to X, setting
the result equal to zero, and then solving for X, to get:

2072 2772
LA _exp—ygz yzuz _Lz (13)
X | \27o,z 20y X ouXT X
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Putting Z—C::O, then the maximum downwind
X

distance of (X) becomes:

2—2
%_% =0= Xmaxzﬂ (14)
oy X X Oy

Substituting from equation (14) in equation (12) to
get the maximum ground level concentration "Cgrcma" by
putting y = 0 as follows:

—2
AQ y*U
C = —exp| —

obemax V270 Xpax 20\% x?

AQ
Cotcma = —— (15)
aLema = DreyUz
Dividing equation (12) by equation (15) to get the
ratio between Cg ¢ and Cgcpmax @s follows:

- 25
CGLC(Z_O) :(\/E))((maxJ exp| — y u (16)

CGLC max (Z = 0) 20'\%X2

Fig. 1 Shows the computed centroid, variance,
skewness, and kurtosis for surface that are compared with
measurements made through wind tunnel in neutral
stability ( Khurshudyan et al. 1981). Recall that skewness
equal 0.7 and kurtosis equals 3 for reflected Gaussian
distribution. The downwind variations of the measured
centroid, variance, skewness and kurtosis agree well with
model predictions.

5. Calculating plume advection velocity

The mean plume wind speed U is defined as:

o0

B IU(Z)Cy(x,z)dz
u=2_ (17)
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Where the wind speed is given as:
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Fig. 2. Non—dimensional maximum ground level concentrations as
function of non-dimensional downwind distance. Measurements
include wind-tunnel experiments

Where u- is the friction velocity, ky is von-Kaman
constant = 0.4 and z, is the roughness height (m). We
substitute from equations (5), (18) in equation (17) to get
the mean plume wind speed in the boundary layer:

F(ljln(z)—l“[ljln[(zo)]—IF[1—1]
b S S S S
U= I
1)
S
Fig. 2 shows a non-dimensional plot of ground level
concentration and downwind distance for surface releases
from neutral USEPA wind tunnel point source dispersion
experiment (Brown et al. 1993). The figure illustrates
ground level concentration by "GLCmax" [equation (16)]
and the downwind distance "xmax" [equation (14)] have

good agreement between the predicted and measured
data.

(19)

6. Conclusion

Equations of the centroid, variance, skewness, and
kurtosis compared well with wind tunnel plume dispersion
measurements. The equations derived for the magnitude
and location of "GLC,," were found to be agreement
well with wind-tunnel measured data. Finally, equation of
the plume advection velocity is derived.
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