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lkjlkjlkjlkj − bl 'kks/k&Ik= esa eSlksLd¢y d¢ f=foeh; nh?kZor̀kdkj ioZr ij vkSj mld¢ vklikl LFkk;h voLFkk 
okys :)ks"e] /k"kZ.kghu vukorhZ cwflus izokg d¢ fy, xf.krh; fun’kZ dks fodflr djus dk iz;kl fd;k x;k 
gSA ewy izokg esa {ks=h; vkSj lkFk gh lkFk ;kE;ksRrjh nksuksa izdkj ds ?kVd ik, x, gSaA ewy izokg dks ;g 
ekurs gq, lqxe cuk;k x;k gS fd ewy izokg osx d¢ lkFk gh lkFk cUVZ&oSlyk vko`fr m¡pkbZ d¢ lkFk ifjofrZr 
ugha gksrh gSA ;gk¡ ts+M & dksvkWfMZusV dks fu/kkZfjr djus okys lehdj.kksa dk mi;ksx fd;k x;k gS ftUgsa {kksHk 
rduhd dk mi;ksx djrs gq, ,d/kkfrd fd;k x;k gSA  

 
,d?kkrh fu/kkZfjr djus okys lehdj.k iqu% nksgjs Qwfj, :ikUrj.k dks izHkkfor djrs gSaA chtxf.kr d¢ 

ljyhdj.k d¢ mijkar {kksHk m/okZ/kj osx ¼w′½ vkSj {kksHk /kkjkjs[kk vkSj foLFkkiu ¼η ′½ d¢ Qwfj, :ikUrj.k esa 
f}rh; Øe esa lkekU; vody lehdj.k izkIr fd, x, gSaA w′ vkSj η′ nksuksa dks nksgjs lekdy d¢ :Ik esa 
O;Dr fd;k x;k gSA bu lekdyksa dk ewY;kadu fo’ys"k.kkRed :Ik ls djuk dfBu gSA vr% ioZr d¢  fupys 
Hkkx esa iou d¢ lqlaxr LFkku fu/kkZj.k ls bu lekdyksa d¢ mixkeh eku izkIr fd, x, gSaA mi;qZDr lekdyksa 
d¢ mixkeh foLrkj dk ewY;kadu djrs gq, rjax la[;k Mksessu esa iY;k.k fcanqvksa ls cpus dk /;ku j[kk x;k gS] 
tgk¡ ij rjax la[;k osDVj  ¼d¢, ,y½ 90° ij ;k mlls vf/kd d¢ dks.k ij ewy izokg osDVj ¼;w ,oh½ d¢  
lkFk >qdk gqvk gSA  

 
mixkeh lek/kku d¢ ifj.kkeksa ls ;g irk pyrk gS fd Uy – Vx = 0 js[kk ij eSnkuh Hkkxksa d¢ e/; esa 

w′ vkSj η′ nksuksa dh jksf/kdk d¢ vuqokr esa deh vkrh gS tcfd mixkeh lek/kku ds ekeys esa X1
-1

  d¢ :Ik esa 
blesa deh vkrh gS  tgk¡  X1] Uy – Vx = 0 js[kk ij ekih xbZ nwjh gSA mixkeh lek/kku ls ;g Kkr gksrk 
gS fd {kSfrth; lery ij uksMy js[kk vfrijoy; ¼gkbijcksyk ½ gS tks Uy – Vx = 0 vkSj Ux + Vy = 0 
js[kkvksa ij v{k gSA mixkeh lek/kku ls Uy – Vx = 0 js[kk ij  m/oZxkeh iou d¢ >qdus vkSj yxHkx blh 
js[kk ij m¡pkbZ ikf’Zod izlkj dk Hkh irk pyrk gSA 

 
 
 

ABSTRACT.  An attempt has been made to develop a mathematical model for a steady state adiabatic, 
frictionless, non-rotating and Boussisnesq flow over and around a meso-scale three-dimensional elliptical mountain. 
Basic flow is assumed to have both zonal as well as meridional components. Basic flow is simplified by assuming that 
basic flow velocity, as well as the Burnt -Vaisala frequency do not change with height. Here the governing equations in z-
coordinate are used, which are linearized using perturbation technique. 

 
The linearized governing equations are again subjected to a double Fourier transformation. After some algebraic 

simplification the second order ordinary differential equations (ODE) in the Fourier transform of perturbation vertical 
velocity (w') and that of perturbation streamline displacement (η') are obtained. Both the w' and η' are expressed as double 
integrals. It is difficult to evaluate these integrals analytically. So the asymptotic values of those integrals, which are valid 
at a far down wind location of the mountain, have been obtained. While evaluating the asymptotic expansion of the above 
integrals, care has been taken to avoid those saddle points in the wave number domain, where the wave number vector 
(k,l) is inclined with the basic flow vector (U, V), at an angle greater than or equal to 90°. 

 
Results of the asymptotic solution shows that in the central plane along the line Uy –Vx = 0 both w' and η' falls off 

down wind of the barrier, more over in case of asymptotic solution they fall off as Xl
-l, where Xl is the distance measured 

along the line Uy – Vx = 0. Asymptotic solution shows that nodal lines on the horizontal plane are hyperbola the axes of 
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which are along the lines Uy – Vx = 0 and Ux + Vy = 0. Asymptotic solution also shows upwind tilting along the line     
Uy – Vx = 0 and lateral spreading about the same line with height. 

 
Key words − Meso-scale elliptic mountain, Lee wave, Asymptotic expansion. 
 
 

1. Introduction 
 

The study of the perturbation in a stably stratified air 
stream by an obstacle may be broadly divided into two 
categories. In one category the obstacle is assumed to 
have an infinite extension in the crosswind direction, so 
that the flow essentially becomes two- dimensional (2-D). 
In the other category the obstacle is assumed to have finite 
extension in the crosswind direction and the flow becomes 
essentially three-dimensional (3-D). The study on 2-D 
mountain wave problem was first addressed by Lyra 
(1943). He considered a 2-D model with uniform air-
stream of constant static stability and obtained solutions 
using Green's functions. He obtained lee waves, which 
decreased downstream and increased upward. But this 
upward increase of wave amplitude was contrary to the 
observation. Queney (1947, 1948) proposed a complete 
theory of adiabatic perturbations in a stratified and 
rotating atmosphere, and applied this theory to the flow of 
air-stream over a 2-D bell shaped mountain with half 
width 'a'. Like Lyra (1943) Queney also took uniform 
basic flow and constant static stability.  

 
The studies on three-dimensional mountain wave 

problem were first addressed by Scorer and Wilkinson 
(1956). They synthesized one isolated three-dimensional 
hill by superposition of infinite ridges inclined at different 
angles but intersecting at a point, which was expressed 
mathematically by an integral. They computed 
interference pattern of the lee wave systems of the 
component ridges. They found lee wave pattern very 
similar to that produced by a ship moving across the 
surface deep water. In their result, lee waves were 
confined within a wedge-shaped region, the corner of 
which being vertical and through the hill top, where the 
half angle of the wedge was dependent on the air stream 
character. Wurtele (1957) represented the 3-D orographic 
barrier in the form of semi-infinite plateau of height 'h' 
with narrow width '2b' in the cross wind direction. He 
considered the incoming wind (U) and buoyancy 
frequency (N) to be independent of height. His theory 
predicted the region of updraft, which had a horseshoe 
shape and was located some distance downstream of the 
barrier. Crapper (1959) presented a 3-D small perturbation 
approach of waves produced in a stably stratified air 
stream flowing over a mountain. He obtained the 
fundamental solution for a doublet disturbance in an air 
stream in which Scorers parameter remains constant and 
then it was extended to that for a disturbance caused by a 
circular mountain in the same air stream. He showed that 

circular mountain can give rise to waves which have 
greater amplitude than those produced by an infinite ridge 
in the same air stream. Crapper (1962) considered the 
airflow across a 3-D barrier with elliptical contour for two 
types of air stream. In one case the Scorer parameter 
(Scorer, 1949) l was constant with height, in other case it 
was assumed to fall off exponentially with height. In each 

of the above cases 2
2d

2d
q

z

U

U

l =   was kept constant. The 

result showed that when l is constant, then the form of the 
waves was determined by the value of q. They also 
showed that when 1 falls off exponentially, the waves 
closely resembled ship waves for any value of q. Sawyar 
(1962) studied gravity waves in the atmosphere as a 3-D 
problem. He derived an equation, for the vertical variation 
of the amplitude of the standing waves, when the wind 
varied with height and the wave was periodic in the 
horizontal. He solved the equation numerically for 
specified two or three layer atmosphere to determine 
possible wavelengths in the horizontal directions for lee 
waves. He obtained results for the cases when wind 
direction changed with height as well as for the cases 
when wind direction remained same in the vertical. He 
showed interestingly that Scorer's (1949) condition for the 
occurrence of lee wave was no longer applied for wave 
motion in 3-D. He showed that in 3-D, lee waves are 
always possible in a two-layer atmosphere. Das (1964) 
studied 3-D lee waves associated with a large circular 
mountain with some ideal atmospheric condition. Since 
the dimension of the mountain, he took, was large      
(1000 km), hence he had to consider the effect of Coriolis 
force. The nodal lines in his solution were systems of 
concentric circles, whereas those in the Wurtele's (1957) 
were system of hyperbola. Das attributed this difference to 
the geostrophic assumption taken by him. Smith (1980) 
examined the stratified hydrostatic flow over a bell shaped 
3-D isolated mountain using linear theory. Solutions for 
various parts of the flow field were obtained using 
analytical method and numerical Fourier analysis. The 
flow aloft was found to be composed of vertically 
propagating mountain waves. The maximum amplitude of 
these waves occurred directly over the mountain, but there 
was considerable wave energy trailing downstream along 

the parabolas 
U

Nzax
y =2 ; where U, N are respectively the 

constant basic zonal wind and buoyancy frequency. 
 

Somieski (1981) studied the stratified hydrostatic 
flow over a three dimensional circular mountain. He 
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derived a 2nd  order wave equation from the primitive 
equation including constant rotation and vertical wind 
shear of the mean flow. He solved the equation 
numerically. He showed that in case of no shear and 
constant static stability, the nodal lines are parabolic for a 
circular mountain of diameter 50 km. Olafssen and 
Bougeault (1996) explored the hydrostatic flow over an 
elliptical mountain barrier of aspect ratio 5. They took 
upstream profiles of wind (U) and stability (N) constant 
ignored the effect of Coriolis force. Under such conditions 
their result showed the flow characteristics to be 
dependent mainly on the non-dimensional mountain 

height 
U

Nh
.They found that for all values of 

U

Nh
, a 

substantial part of the flow was diverted vertically above 
the mountain. They found generation of potential vorticity 
in the wake of the mountain, leading to the creation of lee 
vortices. 
 

Dutta et al. (2002) have made a theoretical study on 
the problem of 3-D lee waves across a meso-scale 
elliptical mountain. In this study the basic flow has been 
assumed to be solely normal to the major ridge of the 
elliptical mountain.  

 
From the foregoing discussions it appears that in 

most of the studies on 3-D mountain wave problem, the 
basic flow is assumed to consist of only that component 
(U), which is normal to the major ridge of the mountain. 
Those studies did not consider other component of basic 
flow (V), which is parallel to the major ridge of the 
mountain. But in the real atmosphere at any level 
horizontal wind may have both components, viz., the 
component normal to the major ridge as well as the 
component parallel to the major ridge. So, it is necessary 
to investigate, atleast qualitatively, the effect of 'V' 
component on the pattern of perturbation vertical velocity 
(w') and stream line displacement (η') associated with 3-D 
lee wave.  

 
The objective of the present study is to develop a     

3-D lee wave model across a meso-scale elliptical 3-D 
mountain, with a basic flow having both the components 
'U' and 'V' and thereby to study the effect of 'V' 
component. 
 
 
2. Methodology 
 

To develop the model following assumptions are 
made: 
 
(i)  Steady state flow 
 
(ii )  Friction less flow 

(iii )  Adiabatic flow 
 
(iv)  Boussisnesq flow 
 
(v)  Non-rotating flow 
 

The basic flow is assumed to have both the 
components U and V, normal and parallel to the major 
ridge of the mountain respectively. It is again simplified 
by assuming U, V and the Burnt-Vaisala frequency (N), to 
be invariant with height. The smoothed profile of the 3-D 
elliptical mountain is expressed analytically as  

 

h(x, y) = 

2

2

2

2

1
b

y

a

x

H

++
                                            (1) 

 
Where, H is the maximum height of the mountain at 

the center (0,0) and a, b are half widths of the mountain 
along the two components of basic flow.  

 
Under above assumptions (i)-(v), the linearized 

governing equations may be written as 
 

x

p

y

u
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x
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∂
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∂
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                                                (5) 

 

0
θθθ 0 =′+

∂
′∂+

∂
′∂

dz

d
w

y
V

x
U                                     (6) 

 
Where θ,,,, ′′′′′ pwvu  are perturbation zonal, 

meridional, vertical components of wind and perturbation 
pressure and potential temperature respectively and θ0 = θ0 

(z), ρ0 = ρ0 (z) are respectively the potential temperature 
and density of the basic state flow at the height z. 

 
Now equations (2)-(6) are subjected to double 

Fourier transform given by 
 

yxezyxfzlkf lykxi dd),,(),,(ˆ )( +−
∞

∞−

∞

∞−
∫∫=                        (7) 
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and  
 

f(x,y,z) = ∫∫
∞

∞−

+
∞

∞−

lkezlkf lykxi dd),,(ˆ
4

1 )(
2π

           (8) 

 

where f̂  is the double Fourier transform of f . 

 
Then equations (2)-(6) transformed to 
 

0ρ

ˆ
ˆ)(

p
ikulVkUi −=+                                             (9) 

 

0ρ

ˆ
ˆ)(

p
ilvlVkUi −=+                                            (10) 

 

00 θ

θ̂
g

ˆ

ρ

1
ˆ)( +

∂
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−=+
z

p
wlVkUi                              (11) 

 

0
ˆ

)ˆˆ( =
∂
∂++

z

w
vluki                                                 (12) 

 

0
d

dθ
ˆθ̂)( 0 =++

z
wlVkUi                                        (13) 

 

Where, θ̂,ˆ,ˆ,ˆ,ˆ pwvu  are double Fourier transforms of  

θ,,,, ′′′′′ pwvu  respectively. Now eliminating θ̂,ˆ,ˆ,ˆ pvu   

from equations (9)-(13), we obtain 
 

( )
0ˆ1)(

ˆ

d

dρ

ρ

1ˆ
2

2
220

0
2

2

=







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


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++

∂
∂+

∂
∂

w
VlUk

N
lk

z

w

zz

w
  (14) 

 
 

where 
z

N
d

dθ

θ

g 0

0

=  is the Burnt-Vaisala 

frequency, which has been assumed to be invariant with 
height for the present study. Now by the substitution  

 

),,(ˆ
)(ρ

)0(ρ
),,(ˆ 1

2/1

0

0 zlkw
z

zlkw 







=                        (15) 

 
the equation (14) further simplified to  
 
 

( )
( )

0ˆ1
ˆ

12

2
22

2
1

2

=







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
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VlUk
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Now, the earlier workers have shown that  
 

( )
TR

zRg

e
z

*

*

2

2/1

0

0

)(ρ

)0(ρ
γ−

≈









, where )(, zTΥ , are basic state 

lapse rate and temperature at level z. 
 

While obtaining equation (16) the terms 














−

2
0

2

0 d

ρd

ρ2

1

z
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2
0

2
0 d

dρ

4ρ

1









z
 have been neglected 

because they are less, by at least one order of magnitude, 
than the other terms in the square bracket. 
 

Now if  ),,(η zyx′    be the perturbation streamline 

displacement, then we have 
 

y
V

x
Uzyxw

∂
′∂

+
∂

′∂
=′ ηη

),,(                                   (17) 

 
Hence, η̂)(),,(ˆ lVkUizlkw +=  . Then it is readily 

seen that η̂  also satisfies equation (14). Now, by the 

substitution  
 

),,(η̂),,(η̂ 1
2

)(

zlkezlk TR

zRg γ−

≈                              (18) 

 
we obtain 
 

( )
( )

0η̂1
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12

2
22

2
1
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=







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∂
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VlUk

N
lk
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              (19) 

 
Equations (16) and (19) are solved subject to the 

following boundary conditions: 
 
(i) At the lower boundary stream line pattern follow the 
contour of the mountain, 
 
(ii ) At the upper boundary radiative boundary condition 
is imposed i.e., mountain wave is allowed to propagate 
vertically. 
 

Now using the upper boundary condition (ii ), the 
general solution of equation (16) and (19) can be taken as 

 
imzezlkw A),,(ˆ1 =                                                 (20) 

 
and 
 

imzezlk B),,(η̂1 =                                                  (21) 
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where A, B are constants to be determined using 
lower boundary condition and m is given by, 

( )
( )22

2

2
2 1 lk

lVkU

N
m +












−

+
= . Clearly m may be 

recognized as the vertical wave number of the vertically 
propagating mountain wave. 

 
At the lower boundary we have ),()0,,(η yxhyx =′ . 

 

Hence, ),(ˆ)0,,(η̂ lkhlk = .    

 

Now 





 += 2222

0π2),(ˆ lbkaabHKlkh . Detail of 

this derivation has been explained in Dutta et al. (2002). 
Here K0(x) is the Bessel function of second kind of order 

zero. Hence, 





 += 2222

0π2 lbkaabHKB .  Again the 

linearized lower boundary condition for w' may be given 
by 
 

y

yx
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)0,,( . 

 
Hence, 

 
)0,,(η̂)()0,,(ˆ lklVkUilkw += . 

 

Hence 





 ++= 2222

0)(π2A lbkaabHKlVkUi . 

Thus solution of (16) and (19) are given by: 
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 ++= 2222
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                       (22)                                                               
 and 
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
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
 += 2222

01 π2),,(η̂        (23) 

 
Therefore, 
 

×=′ czyxw ),,(  Real part of I1 and 

 
×=′ czyx ),,(η  Real part of I2, where, 
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The double integrals I1 and I2  are difficult to 

evaluate analytically. So they are amenable to the method 
of stationary phase. According to this method, first those 
points in the wave number(k,l) domain are found out, 
where the phase (kx + ly + mz) is stationary. Those points 
are termed as saddle points. Then the entire integrand is 
expanded in Taylor's series about the saddle point and the 
first term of the expansion is retained as the asymptotic 
approximation of the integrals, which is valid at far down 
wind location of the mountain. 

 
3. Discussion 
 

Following Dutta et al. (2002), the asymptotic 
approximation of ),,( 11 ZYXw′   and ),,(η 11 ZYX′ , 

obtained from (24) and (25) are given by: 
 

Thus,  
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and, 
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where, 
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Fig. 1(a). Down wind variation of w′  computed asymptotically, along the line Uy–Vx=0 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1(b). Down wind variation of η′  computed asymptotically, along the line Uy–Vx=0 

 
While obtaining asymptotic expression for w′  and 

η′  care has been taken to avoid all those saddle points, in 

the wave number domain, from the contour, which are 
inclined with the basic flow vector (U, V) at an angle of 
90° or more. 
 
 

From the asymptotic solution (26) it is clear that 
w′ =0 for z=0. Thus it represents, the lee wave 

(Wurtele,1957). Now, for  ,,ρ,0 22
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be expressed as  
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Fig. 2(a). Contour of w′ at 4 km level taking ‘V’ component 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2(c). Contour of w′ at 4 km without taking ‘V’ component 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 2(b). Contour of w′ at 8 km  taking ‘V’ component 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2(d). Contour of w′ at 8 km without taking ‘V’ component 
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Fig. 3(a). Contour of  η′ at 4 km level taking ‘V’ component 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3(b). Contour of η′  at 8 km level taking ‘V’ component 

 
 
 
From the above expressions for w′  and η′  it is clear 

that, along the line Uy – Vx = 0, both of them decay down 

wind of the barrier at a rate proportional to 1
1
−X , i.e., 

inversely proportional to the distance along the line         
Uy – Vx = 0, owing to the presence of the terms 

( ) 2/322
1

2
1

ZX

X

+
 and ( )22

1

1

ZX

X

+
  respectively. This is 

clearly reflected in Figs. 1 (a&b), which show the 

downwind variation of w′  and η′  in the central plane 

along the line Uy − Vx = 0. In these figures the 
fluctuations may be attributed to the product of the 

damping factors ( ) 2/322
1

2
1

ZX

X

+
, ( )22

1

1

ZX

X

+
 with the 

Bessel function. 
 
Following the analysis, made in Dutta et al. (2002), 

it can be shown that the nodal lines (where w′  = 0) on any 
horizontal plane (Z = Z0) are system of hyperbolas,        
the axes of which are along the lines Uy – Vx = 0 and     
Ux +   Vy = 0 respectively and the latus rectum of which 
increases with increase in height. Due to this the updraft 
regions are crescent shaped, symmetrical about the line   
Uy – Vx = 0, tilting upwind with height along the line     
Uy – Vx = 0 and spreading laterally with height about the 
same line. These are clearly reflected in Figs. 2(a&b) and 
in Figs. 3(a&b), which show the contours of w′  and  η′  

at 4 km and 8 km incorporating the effect of 'V' 
component. These figures show that the contours are 
approximately crescent shaped with axis of symmetry 
being inclined with the E-W direction by some angle. 
Figs. 2(c&d) show the contour of w′  at 4 km and 8 km 
level, without taking the 'V' component, which are 
crescent shaped, symmetrical about E-W direction. 
Comparing these two figures with        Figs. 2(a&b) it is 
clear that the result of incorporation of the 'V' component 
is, to rotate the axis of symmetry of crescent shaped 

updraft region by an angle of  






−

U

V1tan . Lateral 

spreading of the wave, as shown in Figs. 2(a&b) and in 
Figs. 3(a&b), is due to the presence of divergent part in 
the lee wave, a typical characteristic of 3-D lee wave. The 
upwind tilting and lateral spreading may physically be 
interpreted as the upwind trailing of wave energy along 
the line Uy – VX = 0 and lateral spreading of wave energy 
about the same line. 
 

Gjevic and Marthinson (1978) had also found 
diverging type as well as transverse type lee wave pattern 
analyzing satellite photograph to study the lee wave 
patterns generated by isolated islands in the Norwegian 
Sea and the Barents Sea. In the former case the crests 
were observed to be oriented outwards from the centre of 
the wakewhere and in later case the crests were nearly 
perpendicular to the wave direction. In the Figs. 2(a&b) 
and 3(a&b) crescent shaped updraft regions are found 
symmetric about the line Uy – Vx = 0. Wurtele (1957), 
obtained crescent shaped updraft region, symmetric about 
x-axis (i.e. about the line y = 0), taking constant basic flow 
with only U-component. Now due to the presence of       
V-component, there is a meridional forcing acting at all 
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level, causing the symmetric (about the line y = 0) 
crescent shaped updraft region to rotate. This may be the 
possible cause for the orientation of the crescent shaped 
updraft region in the present study. 
 

Nodal lines in the study of Das (1964) were 
concentric circles which may be attributed to the 
geostrophic approximation made by him and the larger 
scale of the barrier taken by him. Smith (1980), taking 
hydrostatic approximation, obtained parabolic shaped 
nodal lines. Someiski (1981) taking hydrostatic 
approximation has also shown that if the diameter of the 
circular obstacle is 50 km, then flow becomes non-
geostophic and the nodal lines in that case become 
parabolic shaped. In the present study neither geostrophic 
nor hydrostatic approximations are made. Hence the nodal 
lines are system of Hyperbola in conformity with the 
earlier findings of Wurtele (1957), only difference is that 
in the present study the axes of the Hyperbola have been 

rotated through an angle 






−

U

V1tan  due to the presence of 

V -component in the basic flow. 
 
It is known that the correct prediction, atleast 

qualitatively, of the region of upward motion associated 
with mountain wave is very important for aviation. In 
most of the studies, cited above, the basic flow has been 
assumed to have only 'U' component for a 3-D mountain, 
with major ridge being N-S oriented. And those studies 
have predicted more or less crescent shaped region of 
updraft motion, (except Das, 1964) symmetric about E-W 
direction. These results do seem to differ more from 
reality, because at every level the basic wind may have 
both components 'U' and 'V' instead of having only 'U' 
component. But the present study has considered the 
effect of both these components for a 3-D mountain, with 
major ridge being N-S oriented. The result of the present 
study shows that although the region of upward motion is 
crescent shaped but it is not symmetrical about E-W 
direction, rather it is symmetrical about a line inclined at 

an angle of 






−

U

V1tan  with E-W direction. So, the results 

of present study are capable to predict, atleast 
qualitatively, more accurately the region of updraft 
associated with 3-D meso-scale lee wave. 
 

Even the mountain wave cloud to the lee of the 
Mount Fujiyama, as shown in Wurtele (1957), was of 
crescent shaped, but it was not symmetrical about the 
central axis, rather the axis of crescent shaped cloud 
region had some inclination with the central axis which 
was not predicted by Wurtele (1957). The inclination can 
be predicted if the effect of V is incorporated in the model. 
So the result of this present study can be taken as the 

generalization of the results of Wurtele (1957), Dutta et al. 
(2002). 

 
4. Conclusions 
 

From the above study following conclusions may be 
made: 
 
(i) The asymptotic solutions for w′  and η′  show that, in 

the central plane along the line Uy – Vx = 0 both decrease 

down wind of the barrier at a rate proportional to 11
−X . 

 
(ii ) Nodal lines on the horizontal planes are Hyperbola, 
the axes of which are along the lines Uy –Vx = 0 and      
Ux – Vy = 0 . 
 
(iii ) In the horizontal plane contour of w′ , as obtained by 
asymptotic method, shows that the regions of updraft are 
crescent shaped which are symmetrical about a line 

inclined at an angle of  






−

U

V1tan    with central axis. 

 
(iv) Asymptotic solution for both w′  and η′  shows 

upwind tilting along the line Uy – Vx = 0 and lateral 
spreading about the same line with height. 
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