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ABSTRACT. An attempt has been made to develop a mathematicalel for a steady state adiabatic,
frictionless, non-rotating and Boussisnesq flowroaad around a meso-scale three-dimensional ebiptnhountain.
Basic flow is assumed to have both zonal as wethesdional components. Basic flow is simplified éysuming that
basic flow velocity, as well as the Burnt -Vaisfigquency do not change with height. Here the gomgrequations iz-
coordinate are used, which are linearized usintygaation technique.

The linearized governing equations are again stdgjeto a double Fourier transformation. After scafgebraic
simplification the second order ordinary differehtequations (ODE) in the Fourier transform of pdsation vertical
velocity (') and that of perturbation streamline displacentgihtare obtained. Both the andn' are expressed as double
integrals. It is difficult to evaluate these intalgranalytically. So the asymptotic values of thiosegrals, which are valid
at a far down wind location of the mountain, haeerbobtained. While evaluating the asymptotic egjmmof the above
integrals, care has been taken to avoid those esguidihts in the wave number domain, where the wasaber vector
(k1) is inclined with the basic flow vectdd( V), at an angle greater than or equal to 90°.

Results of the asymptotic solution shows that endéntral plane along the lity —Vx = 0 bothw' andn’ falls off
down wind of the barrier, more over in case of gstgtic solution they fall off aX"!, whereX, is the distance measured
along the lindJy — Vx = 0. Asymptotic solution shows that nodal linestioa horizontal plane are hyperbola the axes of
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which are along the linedy — Vx = 0 andUx + Vy = 0. Asymptotic solution also shows upwind tiltiagpng the line
Uy —Vx =0 and lateral spreading about the same line frétght.

K ey words — Meso-scale elliptic mountain, Lee wave, Asymigtekpansion.

1. Introduction

The study of the perturbation in a stably stradiféer
stream by an obstacle may be broadly divided into t
categories. In one category the obstacle is assumed
have an infinite extension in the crosswind di@ttiso
that the flow essentially becomes two- dimensid@aD).

In the other category the obstacle is assumedve figite
extension in the crosswind direction and the flegdmes
essentially three-dimensional (3-D). The study oD 2

circular mountain can give rise to waves which have
greater amplitude than those produced by an iefinitge

in the same air stream. Crapper (1962) considened t
airflow across a 3-D barrier with elliptical contdier two
types of air stream. In one case the Scorer pasmet
(Scorer, 1949) was constant with height, in other case it
was assumed to fall off exponentially with heighteach

2
of the above casetle—d—U:q2

was kept constant. The
dz2

mountain wave problem was first addressed by Lyraresult showed that whdris constant, then the form of the
(1943). He considered a 2-D model with uniform air- waves was determined by the value @f They also

stream of constant static stability and obtainelditems
using Green's functions. He obtained lee wavesgclwhi

showed that wher falls off exponentially, the waves
closely resembled ship waves for any value.o8awyar

decreased downstream and increased upward. But thi§1962) studied gravity waves in the atmosphere 8sDa

upward increase of wave amplitude was contraryhto t

problem. He derived an equation, for the vertiGaiation

observation. Queney (1947, 1948) proposed a coeplet of the amplitude of the standing waves, when thedwi

theory of adiabatic perturbations in a stratifiedda
rotating atmosphere, and applied this theory tdflthe of

varied with height and the wave was periodic in the
horizontal. He solved the equation numerically for

air-stream over a 2-D bell shaped mountain withf hal specified two or three layer atmosphere to detezmin

width 'a'. Like Lyra (1943) Queney also took unifor
basic flow and constant static stability.

possible wavelengths in the horizontal directioos lee
waves. He obtained results for the cases when wind
direction changed with height as well as for theesa

The studies on three-dimensional mountain wave when wind direction remained same in the verti¢ég.

problem were first addressed by Scorer and Wilkinso
(1956). They synthesized one isolated three-dino@asi
hill by superposition of infinite ridges inclined different
angles but intersecting at a point, which was esged
mathematically by an integral. They

showed interestingly that Scorer's (1949) condifanrthe
occurrence of lee wave was no longer applied fovewva
motion in 3-D. He showed that in 3-D, lee waves are
always possible in a two-layer atmosphere. Das 4196

computed studied 3-D lee waves associated with a large lkarcu

interference pattern of the lee wave systems of themountain with some ideal atmospheric condition.c8in
component ridges. They found lee wave pattern verythe dimension of the mountain, he took, was large

similar to that produced by a ship moving across th

(1000 km), hence he had to consider the effectarfolis

surface deep water. In their result, lee waves wereforce. The nodal lines in his solution were systesfs
confined within a wedge-shaped region, the cornfer o concentric circles, whereas those in the WurtgE67)

which being vertical and through the hill top, wiehe
half angle of the wedge was dependent on the @Eaist
character. Wurtele (1957) represented the 3-D agiyc
barrier in the form of semi-infinite plateau of gkt 'h'
with narrow width '2b' in the cross wind directioHe
considered the incoming windU)Y and buoyancy
frequency N) to be independent of height. His theory
predicted the region of updraft, which had a hdrees

were system of hyperbola. Das attributed this tiffiee to
the geostrophic assumption taken by him. Smith @198
examined the stratified hydrostatic flow over a kbbhped
3-D isolated mountain using linear theory. Solusidor
various parts of the flow field were obtained using
analytical method and numerical Fourier analysiee T
flow aloft was found to be composed of vertically
propagating mountain waves. The maximum amplitude o

shape and was located some distance downstreahe of t these waves occurred directly over the mountainthrre

barrier. Crapper (1959) presented a 3-D small peation
approach of waves produced in a stably stratifigd a
stream flowing over a mountain.
fundamental solution for a doublet disturbance nnaér
stream in which Scorers parameter remains consiaht
then it was extended to that for a disturbance ey a
circular mountain in the same air stream. He shothat

He obtained the

was considerable wave energy trailing downstreaomgal
Nzax .
the parabolas/? =T; whereU, N are respectively the

constant basic zonal wind and buoyancy frequency.

Somieski (1981) studied the stratified hydrostatic
flow over a three dimensional circular mountain. He



DUTTA : OROGRAPHIG-EECT ON BAROTROPIC AIR-STREAM 587

derived a ¥ order wave equation from the primitive (iii) Adiabatic flow

equation including constant rotation and verticahdv

shear of the mean flow. He solved the equation (iv) Boussisnesq flow

numerically. He showed that in case of no shear and

constant static stability, the nodal lines are palia for a (v) Non-rotating flow

circular mountain of diameter 50 km. Olafssen and

Bougeault (1996) explored the hydrostatic flow oesr The basic flow is assumed to have both the
elliptical mountain barrier of aspect ratio 5. Thpok componentsJ andV, normal and parallel to the major
upstream profiles of windlW) and stability N) constant  ridge of the mountain respectively. It is again difred
ignored the effect of Coriolis force. Under sucimditions by assumingJ, V and the Burnt-Vaisala frequency (N), to
their result showed the flow characteristics to be be invariant with height. The smoothed profile loé 3-D
dependent mainly on the non-dimensional mountain elliptical mountain is expressed analytically as

height ’L\IJ—h.They found that for all values o{lj—h a

H
. . . h(x,y) = e (1)
substantial part of the flow was diverted vertigabove X° .y
the mountain. They found generation of potentiatigity 1+;2+b7

in the wake of the mountain, leading to the crematiblee

vortices. . . : :
Where,H is the maximum height of the mountain at

the center (0,0) and, b are half widths of the mountain

Duttaet al. (2002) have made a theoretical study Onealong the two components of basic flow.

the problem of 3-D lee waves across a meso-scal
elliptical mountain. In this study the basic flowmshbeen
assumed to be solely normal to the major ridgehef t
elliptical mountain.

Under above assumptions)-(v), the linearized
governing equations may be written as

From the foregoing discussions it appears that in Ua_u'+va_u':_i6_p' )
most of the studies on 3-D mountain wave probldm, t 0x oy po 0X
basic flow is assumed to consist of only that congud
(U), which is normal to the major ridge of the moumta oV’ oV’ 1 9p'
Those studies did not consider other componentasicb 6_+ v ——a— (3
flow (V), which is parallel to the major ridge of the X y Po 0¥
mountain. But in the real atmosphere at any level
horizontal wind may have both componentsz., the ow' ow 1 o0p  go

o U—+V—=-———+— (4)

component normal to the major ridge as well as the OX ay po 02 0,

component parallel to the major ridge. So, it isessary
to investigate, atleast qualitatively, the effect ¥
component on the pattern of perturbation vertiedbeity — +—+—=0 (5)
(W) and stream line displacement)(associated with 3-D ox oy oz

lee wave.

The objective of the present study is to develop a &*’V_*'WE: (6)
3-D lee wave model across a meso-scale ellipticBl 3
mountain, with a basic flow having both the compuae C ,
'U' and V' and thereby to study the effect of" ' Where u',v',w',p’,60" are perturbation zonal,
component. meridional, vertical components of wind and peratidn
pressure and potential temperature respectivelPand,
(2, po = po (2) are respectively the potential temperature

2. Methodology and density of the basic state flow at the height z
To develop the model following assumptions are Now equations (2)-(6) are subjected to double
made: Fourier transform given by

(i) Steady state flow . PR _
f(k,1,2)= j j f(x,y, 2)e7© W) dydy @)
(ii) Friction less flow Zo0 e
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and
f(xy,2) = iz j J' f (K1, 2)e!®) gkl 8)
LY/
where f is the double Fourier transform fof
Then equations (2)-(6) transformed to
. D
i(kU+IV)u=-ik — (9)
Po
. D
i(kU +IV)v=—il — (10)
Po
i(kU +|V)v”v:—i@+ 9 (11)
po 0 8y,
.
i(kd+Iv)+—=0 j12
0z
i(kU +|V)é+wd§—°:o (13)
z

Where, 4,V, W, p,0 are double Fourier transforms of

u',v',w, p',0" respectively. Now eliminatingi,v, p,0
from equations (9)-(13), we obtain

N—Z)Z—l}wzo (14)

2;\ ~
6_W+idp_06_vv+(k2 +] 2)
(Uk+VI

9z> po dz oz

where N= ide—o is the Burnt-Vaisala
0, dz

frequency, which has been assumed to be invaright w
height for the present study. Now by the substtuti

(O) 1/2
Wk, 1, 2) =(p° j Wy (k. 1, 2) (15)
Po(2)
the equation (14) further simplified to
A k2 +12) N Wiy =0 (16)
0z* (Uk+wv1)?
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Now, the earlier workers have shown that

, where Y, 'F(z), are basic state

1/2 g-R'y)z
(po_(o)j =e 2R'T
Po(2)

lapse rate and temperature at lexel

While obtaining equation (16) the terms
d2 dpo )
_ 1 p2° and 12( po] have been neglected
2p0 dz 4p0 dz

because they are less, by at least one order ofitndg,
than the other terms in the square bracket.

Now if 71'(X,y,z) be the perturbation streamline
displacement, then we have
o' o'

w(x,y,z)=U —+V —

17
0X oy (17)

Hence, w(k,l,2) =i(kU +IV)n . Then it is readily
seen thatn also satisfies equation (14). Now, by the
substitution

(g_RK)Z
nk,l,z=e R (k1,2 (18)
we obtain
0Ny (2.2 N? A
+k2+12) — 1|, =0 (19)
9z | )(Uk+VI)2 '

Equations (16) and (19) are solved subject to the
following boundary conditions:

(i) At the lower boundary stream line pattern folldve
contour of the mountain,

(i) At the upper boundary radiative boundary conditio
is imposedi.e., mountain wave is allowed to propagate
vertically.

Now using the upper boundary conditioin),(the
general solution of equation (16) and (19) caralzen as

W (k,1,2) = Ae'™ §20
and
f1(k,1,2) = Be'™ 1j2
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where A, B are constants to be determined using
lower boundary condition andm is given by,

2 _ N? 2.2
m?2 = —(kU IV)2 -1 (k +I ) Clearly m may be
+

recognized as the vertical wave number of the cadiyi
propagating mountain wave.

At the lower boundary we havwg(x, y,0) =h(x, y) .

Hence,n(k,!,0) = h(k,) .

Now h(k, 1) = 2rabHK, (\/azkz +b? 2) . Detail of

this derivation has been explained in Dwdtaal (2002).
Here Kq(x) is the Bessel function of second kind of order

zero. Hence,B:21rabHK0(\/a2k2 +b2I2]. Again the

linearized lower boundary condition fa may be given
by

on'(x,y,0)
ay

w(x y0) =u 1Y) Ly
ox

Hence,

W(k,1,0) =i (KU +IV)i(k,1,0) .

Hence A =2in(kU +IV)abHK0(\/a2k2 +b?| 2 ) .

Thus solution of (16) and (19) are given by:

W, (K, 1, 2) = 2in(kU +IV )abHK, (\/azkz +h?? )e‘mz

(22)
and
ﬁl(k,l,z)=2nabHK0(\/a2k2+b2I2jeimZ (23)
Therefore,
wW'(X, Y, zZ) =cx Real part of, and
n'(x,y,z) =cx Real part of,, where,
(g—Rky) z
c=H e RT ang
2n
= j J.i(kU +IV)KO(\/a2k2 +b2I2)ei(kX+'y+mZ)dkdl

(24)
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|2_J' J.K ( a2k? +b?| ) el rma g (25)

—00 —00

00

The double integrald; and I, are difficult to
evaluate analytically. So they are amenable taribéhod
of stationary phase. According to this method.t firmse
points in the wave numbdgl) domain are found out,
where the phaseéX + ly + m2 is stationary. Those points
are termed as saddle points. Then the entire muegis
expanded in Taylor's series about the saddle pmidtthe
first term of the expansion is retained as the gugtic
approximation of the integrals, which is valid at iown
wind location of the mountain.

3. Discussion

Following Dutta et al (2002), the asymptotic
approximation of w'(X,,Y;,Z) and n'(Xy,Y;,2),
obtained from (24) and (25) are given by:

Thus,
(g Ry ] abHN3AX sz(ZR]
T p
W(Xy,Y;,Z)=—e R
o PRUZ +V?2)
. (26)
anda,
[g-m J abHN?A co{ZRj
, T p
N'(Xy,Y,2)=e UZ+V?) 27)
where,
X,ZAlp* +(XY,)?
A= 144 P ( 1 1) KO(Argo),

X,Y,ZR

2p3R2\/1+4( ;

pt X12Y12

(lez)\/a2 (Up2 —vxl\(l)2 +b26/p2 +UX1Y1)2

Arggy = pSR(U2+V2)

p2=Y2+22 RZ=X2+p2,

Nz

JU?Z+v?2

NUX+VY) |, - NUy-Vx) -
(U2+V2) 1 (U2+V2)

Xy = andZ
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Fig. 1(b). Down wind variation ofy’ computed asymptotically, along the lidg—\Vx=0

While obtaining asymptotic expression fev' and
n' care has been taken to avoid all those saddlégp@m

the wave number domain, from the contour, which are
inclined with the basic flow vectotJ( V) at an angle of
90° or more.

From the asymptotic solution (26) it is clear that
w'=0 for z=0. Thus it represents, the lee wave

(Wurtele,1957). Now, forY; =0, p=2Z, R* = X7 +Z?2,

(N, Wau 2 +p2v?)

RUZ +v?)

Ko(Argy) -

and

=0,w' andn' can

be expressed as

So at any levelZ(# 0), for Y;
9-Ry

W (X,,0, Z)——e(ZRT ]
2112 2\ /2
abHNsxfsin(w/Xf+Zz)K0 NXya'u~ +bv
(u2+v2L/xf+z2

2x2+22? (U2 +v?)

z
n'(x,O,z)=e( ]
NX,va?U 2 +b2 2
abHNlecos{w/Xf+szK0 va
(u2+v2l\/xf+z2

2(x2+22)u?+v?

(28)
g-Ry
2RT

(29)
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From the above expressions fat andn’ itis clear
that, along the lin&Jy — Vx = 0, both of them decay down
wind of the barrier at a rate proportional ool‘l, ie.,

inversely proportional to the distance along theeli
Uy — Vx = 0, owing to the presence of the terms

& X : o
1 d 1 respectively. This is
(x2+22)

(X12+ZZ)3/2
clearly reflected in Figs. 1 (a&b), which show the

MAUSAM4, 3 (July 2003)

downwind variation ofw' and n' in the central plane

along the lineUy - Vx = 0. In these figures the

fluctuations may be attributed to the product o€ th

Xy X

X12+ZZ)3/2 ’ (X12+22)

damping factors( with the

Bessel function.

Following the analysis, made in Duth al (2002),
it can be shown that the nodal lines (whare= 0) on any
horizontal plane 4 = Z,) are system of hyperbolas,
the axes of which are along the lindg — Vx = 0 and
Ux + Vy= 0 respectively and the latus rectum of which
increases with increase in height. Due to thisupdraft
regions are crescent shaped, symmetrical aboutirtbe
Uy — Vx = 0, tilting upwind with height along the line
Uy — Vx = 0 and spreading laterally with height about the
same line. These are clearly reflected in Figs&B)and
in Figs. 3(a&b), which show the contours of and n'

at 4 km and 8 km incorporating the effect a&f '
component. These figures show that the contours are
approximately crescent shaped with axis of symmetry
being inclined with the E-W direction by some angle
Figs. 2(c&d) show the contour of/ at 4 km and 8 km
level, without taking the V' component, which are
crescent shaped, symmetrical about E-W direction.
Comparing these two figures with Figs. 2(a&bis
clear that the result of incorporation of the component

is, to rotate the axis of symmetry of crescent sdap

updraft region by an angle of tan_l(%j. Lateral

spreading of the wave, as shown in Figs. 2(a&b) iand
Figs. 3(a&b), is due to the presence of divergart m
the lee wave, a typical characteristic of 3-D lesvev The
upwind tilting and lateral spreading may physicalig
interpreted as the upwind trailing of wave ener¢png
the lineUy — VX = 0 and lateral spreading of wave energy
about the same line.

Gjevic and Marthinson (1978) had also found
diverging type as well as transverse type lee vwmttern
analyzing satellite photograph to study the lee avav
patterns generated by isolated islands in the Ngiame
Sea and the Barents Sea. In the former case tlstscre
were observed to be oriented outwards from thereeoft
the wakewhere and in later case the crests werdynea
perpendicular to the wave direction. In the Figa&b)
and 3(a&b) crescent shaped updraft regions aredfoun
symmetric about the lindly — Vx = 0. Wurtele (1957),
obtained crescent shaped updraft region, symmaioeit
x-axis (.e. about the ling/ = 0), taking constant basic flow
with only U-component. Now due to the presence of
V-component, there is a meridional forcing actingakt
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level, causing the symmetric (about the lige= 0)
crescent shaped updraft region to rotate. This beathe
possible cause for the orientation of the cressbaped
updraft region in the present study.

Nodal lines in the study of Das (1964) were

593

generalization of the results of Wurtele (1957)ttBat al
(2002).

4. Conclusions

From the above study following conclusions may be

concentric circles which may be attributed to the made:

geostrophic approximation made by him and the flarge

scale of the barrier taken by him. Smith (1980king
hydrostatic approximation, obtained parabolic shkape
nodal lines. Someiski (1981) taking hydrostatic
approximation has also shown that if the diamefethe

circular obstacle is 50 km, then flow becomes non-

(i) The asymptotic solutions fow' and n' show that, in
the central plane along the litly — Vx = 0 both decrease
down wind of the barrier at a rate proportional)((,_)'l.

geostophic and the nodal lines in that case becomdil) Nodal lines on the horizontal planes are Hypeabol

parabolic shaped. In the present study neithertgmgaisc
nor hydrostatic approximations are made. Hencentiuial
lines are system of Hyperbola in conformity witheth
earlier findings of Wurtele (1957), only differentethat
in the present study the axes of the Hyperbola Heen

rotated through an angllan‘{%] due to the presence of

V -component in the basic flow.

It is known that the correct prediction, atleast
qualitatively, of the region of upward motion assted
with mountain wave is very important for aviatioim
most of the studies, cited above, the basic flow iaen
assumed to have onl"component for a 3-D mountain,
with major ridge being N-S oriented. And those #tad
have predicted more or less crescent shaped regfion
updraft motion, (except Das, 1964) symmetric aliW
direction. These results do seem to differ moremfro
reality, because at every level the basic wind rhaye
both componentdJ' and V' instead of having only 'U'

the axes of which are along the lindy —vVx = 0 and
Ux-Vy=0.

(i) In the horizontal plane contour o¥ , as obtained by
asymptotic method, shows that the regions of updnaf
crescent shaped which are symmetrical about a line

inclined at an angle oitan"l(%] with central axis.

(iv) Asymptotic solution for bothw' and n' shows

upwind tilting along the linedJy — Vx = 0 and lateral
spreading about the same line with height.
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effect of both these components for a 3-D mountaith
major ridge being N-S oriented. The result of thespnt
study shows that although the region of upward omots

crescent shaped but it is not symmetrical about E-W

direction, rather it is symmetrical about a linelined at

an angle oftan'l[%] with E-W direction. So, the results
of present study are capable to predict,
qualitatively, more accurately the region of uptraf
associated with 3-D meso-scale lee wave.

Even the mountain wave cloud to the lee of the
Mount Fujiyama, as shown in Wurtele (1957), was of

crescent shaped, but it was not symmetrical abloat t
central axis, rather the axis of crescent shapeddcl
region had some inclination with the central axisick
was not predicted by Wurtele (1957). The inclinata@an
be predicted if the effect &f is incorporated in the model.
So the result of this present study can be takethas
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