Inversions and Stable Layers in the free atmosphere over India-Part I

R. ANANTHAKRISHNAN and S. RANGARAJAN

Meteorological Office, Poona (Received 20 September 1962)

1. Introduction

A study of the incidence of inversions and stable lapse rates in the free atmosphere and their seasonal variations is of interest not only from the standpoint of the physical and dynamical causes which give rise to them but also because of their practical importance in problems such as control of atmospheric polution, propagation of high frequency radio waves, etc. The conventional representation of upper air data in the form of tables and diagrams for standard levels does not highlight this feature. It was, therefore, considered to be of interest to undertake such a study in respect of the free atmosphere over India. The material for the study was provided by the results of upper air soundings made twice daily at 00 and 12 Z from 12 radiosonde stations. The study has been based on the data collected during the five-year period 1956-1960. In Part I of the study which is the subject matter of the present paper, the results for five stations to the south of latitude 20° N are presented. The stations are -

		Lat.	Long.
1	Trivandrum	$8^{\circ}29'N$	$76^{\circ}57'E$
2	Port Blair	$11^{\circ}40'N$	92°43′E
3	Madras	$13^{\circ}00'N$	80°11′E
4	Visakhapatnam	$17^{\circ}43'N$	83°14′E
5	Bombay	$19^{\circ}05'N$	$72^{\circ}53'E$

Results in respect of seven stations to the north of latitude 20°N will be presented in a subsequent paper of this series. The bifurcation of the stations at latitude 20°N has not been done purely arbitrarily; as will be seen from the results, the northern stations show certain features quite distinct from the southern ones. A detailed discussion of the results contained in this paper highlighting the physical and dynamical causes that would account for the salient features brought out by the analysis will form the subject matter of Part II of this series.

2. Data for Study and Method of Analysis

The original tephigrams of the ascents plotted at the radiosonde stations as well as the tabulation registers of the stations were utilised in the present study. The frequency of occurrence of stable lapse rates (which also includes inversions and isothermal layers) in the free atmosphere are tabulated as a routine measure at all the radiosonde stations. The tabulated figures provided the bulk of the data. In respect of the upper troposphere and lower stratosphere the tabulations in some cases needed to be supplemented or modified with the help of the original ascent data.

For the purpose of the present study, an atmospheric layer has been considered to be thermally stable if the lapse rate in the layer is 2° C/km or less. This definition obviously includes all cases of isothermal layers and inversions. It may be mentioned that the limiting lapse rate stipulated for the definition of the tropopause is also 2° C/km. Hence,

in the upper troposphere, such stable lapse rates are in most cases identifiable with the tropopause. Thus the statistics in respect of these lapse rates at the upper levels furnish useful information about the height of the tropopause and its seasonal variations.

The analysis of the data was carried out separately in respect of the 00 and 12 Z ascents. In general over 95 per cent of all ascents for each of the hours of observation reached upto 6 km; about 50 per cent reached a height of 14 km; nearly 25 per cent of the ascents reached upto 17 km; and 10 per cent upto 20 km. Table 1 which gives the consolidated figures for the 12 Z ascents for the five-year period illustrates the manner in which the observations decreased with height in respect of the various stations.

The data were analysed with two aims in view. In the first instance, the frequency of occurrence of bases of stable layers (irrespective of thickness) in each 1 km stratum of the atmosphere was worked out month by month for each of the stations. In view of the decrease of observations with height the actual frequencies were converted into percentage frequencies. In the second instance, the layers of stable lapse rate were further classified according to their depths and the data grouped for the following four seasons—

(i) December-February (winter season),

(ii) March-May (hot weather season), (iii) June-September (monsoon season) and (iii) October and November (post-monsoon

(iv) October and November (post-monsoon season).

3. Results

Table 2 (a) gives the percentage frequency of occurrence of bases of stable layers in strata of 1 km thickness from surface upto 20 km for each of the twelve months for the five stations. Table 2 (b) gives the frequency distribution of stable layers according to the thicknesses for the entire year obtained by combining the frequencies for the four different seasons. The combining of the four seasonal frequency tables into a single

table was done since the frequency distribution of thicknesses showed more or less the same features in all the four seasons.

Stable layers occurring in the troposphere and lower stratosphere could be classified under the following three broad categories—

- (a) Those occurring between the surface and 1 km above—These are largely associated with radiational cooling of the ground and the adjacent layers of the atmosphere. The frequency of this type of stable layer will be appreciably greater in respect of the morning observations (00 Z). The individual ascent curves actually show that such stable layers generally commence as marked ground inversions with thickness of a few hundred metres later merging into upper stable layers.
- (b) Those occurring between 1 and 6 km which are generally associated with subsidence in the troposphere—These take the form of inversions, isothermal layers or layers of feeble lapse rate. Their bases can at time descend to even below 1 km level.
- (c) Those occurring above 14 km associated with the tropical tropopause—These are almost always in the form of pronounced inversions characteristic of the transition from the troposphere to the stratosphere in the tropics.

In addition to these three categories, stable layers also occur between 6 and 14 km in the upper troposphere over north India in the non-monsoon months. These form a separate class by themselves, some of them being identifiable as distinct extra-tropical type of tropopauses.

Brief accounts of the monthly and seasonal variations of the frequency of occurrence of stable layers in respect of the five radiosonde stations are given below.

(i) Trivandrum—In the lowest l km stratum adjacent to the ground, stable lapse rates are noticed on about 50 per cent of the days in the non-monsoon months and on about

25 per cent of the days during the monsoon season. Above this, the highest incidence of such lapse rates occurs in the stratum between 2 and 3 km, the precentage frequency being about 15 to 20 per cent in all the months. It is noteworthy that stable layers are practically absent between 6 and 14 km throughout the year. Above 14 km there is a rapid increase in frequency in association with the tropical tropopause. The height at which the tropopause occurs most frequently is between 16 and 17 km in all the months. However, in the monsoon months there is a distinct tendency for the tropopause to occur at a lower height on many days. It is also noticed that there is a tendency for the tropopause to occur at a greater height on some days during the non-monsoon months. An independent study of the seasonal variations of the tropopause height over Trivandrum confirms that the mean height during the monsoon months is about 1 km less than during the non-monsoon months.

The depths of stable layers observed in the lower troposphere seldom exceed 1 km. In the great majority of cases the depths vary from 0·2 to 0·6 km only in all the four seasons.

- (ii) Port Blair—Stable lapse rates in the lowest kilometre stratum are observed on about 75 per cent of the days in the months February and March and on about 50 per cent of the days during the remaining months. Between 2 and 6 km stable lapse rates occur with appreciable frequency during the months November to March. As at Trivandrum, stable lapse rates rarely occur between 6 and 14 km. The features associated with the tropopause are also similar to those for Trivandrum. The depth of stable layers in the lower troposphere lies between 0·2 and 0·6 km in most cases.
- (iii) Madras—Stable layers with bases within the first one kilometre above the ground occur on about 50 per cent of the days in the months February, March and

April. The frequencies in the morning and evening are somewhat comparable in these months. However, during the southwest monsoon period June to September, such stable layers occur only on about 15 to 25 per cent of the days. It is noteworthy that during the months October to January the evening figures are much smaller than the morning ones. Another significant feature is the large frequencies of occurrence of stable layers in the lower troposphere between 1 and 4 km in the months December, January and February resulting from upper air subsidence. Such stable layers also occur on some days in the higher levels upto 6 km. Stable layers are practically absent between 7 and 14 km throughout the year. Higher up. the frequencies associated with the tropopause show a maximum between 16 and 17 km in all the months. As in the case of Trivandrum and Port Blair a tendency for the lowering of the tropopause during the southwest monsoon months is noticeable.

During the months December to May the stable layers that occur in the lower troposphere can be as deep as 1 km on some occasions. During the remaining months the depths of such layers rarely exceed 0.6 km. It is noteworthy that in the winter months stable layers more than 1 km deep occur with bases between 1 and 3 km.

(iv) Visakhapatnam-Stable lapse occur with appreciable frequency in the first one kilometre above the ground in all the months. The percentage frequency is over 80 per cent in the months March, April and May. During the second half of the year, the incidence of such stable lapse rates is appreciably less at 12 Z as compared with 00Z. Commencing from November, there is a rapid inof frequency in the lower troposphere from 1 to 5 km in association with upper air subsidence and this continues till the end of April. During the months January to June stable layers also occur occasionally between 6 and 10 km. As will be seen from the tables, the tropopause occurs mostly between 16 and 18 km. The thickness of stable layers in the lower troposphere is generally less than $0.8~\mathrm{km}$ in all the months.

(v) Bombay-During the non-monsoon months stable lapse rates in the first one kilometre are very conspicuous and occur on more than 75 per cent of the days in the mornings. During the monsoon months these are practically absent. Between 2 and 4 km, stable layers resulting from subsidence occur quite frequently during the months October to February; their incidence is fairly frequent also in the months May and June between 1 and 2 km. As contrasted with Trivandrum, Port Blair and Madras, the troposphere from 6 to 12 km over Bombay is characterised by the occurrence of layers of stable lapse rate during the months December to May. This feature is conspicuously brought out by a comparison of the monthly percentage frequency tables for the different stations. As a matter of fact, the tendency for such

occurrence is already noticeable in the case of Visakhapatnam the latitude of which is between those of Bombay and Madras. It is noteworthy that stable layers hardly occur between 6 and 14 km in the monsoon months. In all the months the tropopause occurs mostly in the height interval 16 to 18 km. It will be seen from the frequency tables for Bombay that stable layers also occur in the upper troposphere between 12 and 15 km during the months December to May.

Stable layers occurring in the monsoon and post-monsoon months are generally less than 1 km in depth. There is tendency for stable layers of greater depth to occur in the remaining months.

4. Acknowledgements

Our thanks are to Shri G. S. Nair and Shri H. H. Bokil who rendered substantial assistance in handling and tabulating the large volume of data from the original registers and records.

TABLE 1
Statement showing the total number of cases when radiosonde ascents for 1200 GMT reached various heights (1956-1960)

Stations				Не	ights				
	850 1·5	$\frac{700}{3 \cdot 0}$	500 6·0	300 9·0	200 12·0	150 14·2	100 16·5	80 18	60 ml 20 km
Allahabad	1741	1741	1699	1495	1186	201	400		22.00
Dum Dum	1803	1800	1775	1532	1213	894	486	308	140
Gauhati	1780	1778	1748	1404		758	361	151	61
Jodhpur	1737	1723	1670	1388	1116	506	235	59	30
Madras	1808	1799	1717	1428	1057	781	441	314	141
Nagpur	1736	1693	1595		1091	874	437	274	136
New Delhi	1784	1792	1780	1356	1078	877	551	428	223
Port Blair	1687	1678	1598	1668	1499	1288	854	651	381
Santacruz	1802	1792		1221	794	540	225	160	80
Trivandrum	1737	1730	1770	1457	1069	748	362	226	115
Veraval	1748	1722	1702	1562	1314	1118	717	513	285
Visakhapatnam	1751		1645	1431	1143	917	599	571	310
, manua partitum	1701	1745	1714	1420	1061	790	438	382	198
Total	21114	20993	20413	17362	13621	10091	5706	4037	2100
Percentage cases when different levels were reached	100	99	97	82	65	48	27	19	10

TABLE 2 (a) Percentage frequencies of bases of stable layers at 00 and 12 $\rm Z$ (1956-1960)

Layer (km)	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
					TR	VANDR	UM					
19-20								(0)				
18-19		3 (0)			0 (3)				(3)		(3)	0 (7)
17-18	6 (9)	9 (16)	13 (3)	11 (20)	22 (5)	4 (22)	6 (9)	8 (5)		10 (10)	20 (10)	17 (11)
16-17	26 (20)	30 (38)	20 (35)	21 (18)	26 (35)	42 (30)	17 (22)	28 (28)	33 (12)	35 (36)	22 (37)	23 (37)
15-16	10 (11)	16 (6)	16 (7)	6 (7)	12 (8)	14 (16)	28 (22)	20 (27)	25 (34)	19 (24)	16 (16)	13 (12)
14-15	3 (3)	6 (3)	5 (11)	2 (6)	2 (2)	9 (11)	14 (18)	18 (13)	19 (15)	13 (15)	11 (7)	6 (5)
13-14				1 (2)	0 (2)	2 (1)	3 (2)	(3)	4 (2)	(3)	2 (4)	0 (3)
12-13						1			0			
11-12						(2)			(3)			
10-11												
9-10												
8-9									0	2		
7-8						(1)			(2)	(1)		(2)
6-7	3 (1)		4 (1)		3 (1)	(3)	2 (2)	3 (1)	4 (1)	5 (2)		(3)
5-8		5 (1)	3 (2)	3 (2)	4 (0)	2 (2)	9 (1)	6 (3)	3 (3)	9 (3)	$\frac{2}{(4)}$	(3)
4-5	4 (4)	3 (2)	8 (2)		5 (2)	4 (1)	5 (5)	4 (5)	3 (4)	7 (3)	4 (3)	3 (5)
3-4	8 (8)	8 (4)	. (8)	6 (6)	5 (8)	10 (5)	13 (7)	9 (7)	12 (12)	5 (8)	6 (4)	6 (9)
2-3	15 (25)	14 (23)	19 (20)	14 (7)	11 (10)	16 (13)	13 (11)	14 (11)	13 (12)	19 (12)	11 (11)	21 (25)
1-2	21 (14)	18 (11)	14 (5)	8 (4)	4 (7)	8 (6)	7 (5)	16 (11)	15 (8)	9 (5)	11 (6)	17 (13)
Surf—1	39 (5)	45 (10)	34 (3)	50 (14)	38 (7)	30 (11)	22 (5)	25 (12)	24 (18)	36 (14)	37 (5)	52 (9)

00 Z Frequencies : Unbracketed

12 Z Frequencies: Bracketed

TABLE 2 (a)-contd

Layer (km)	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
19-20						PORT B	LAIR					
18-19			(20)		0 (12)	8 (0)		(50)			25 (17)	(10)
17-18	25 (0)		15 (0)	12 (0)	5 (7)	18 (25)				19 (9)	17 (25)	17 (7)
16-17	20 (8)	16 (7)	$\frac{32}{(14)}$	23 (7)	$^{17}_{(31)}$	$\frac{15}{(10)}$	(23)	20 (40)	$\frac{33}{(43)}$	25 (11)	23 (24)	12 (5)
15-16	12 (8)	$^{13}_{(19)}$	$^{4}_{(4)}$	3 (4)	3 (8)	12 (9)	5 (4)	12 (0)	6 (11)	13 (19)	16 (12)	12 (21)
4-15	3 (6)	11 (3)	5 (0)	7 (0)	(0)	0 (7)	6 (6)	4 (5)	10 (14)	7 (7)	12 (4)	(0)
3-14	3 (2)	0 (2)	0 (2)	(0)	(0)		(0)			(4)		(2)
2-13	(0)		(2)			0 (2)	(0)			3 (0)	(0)	
1-12		0 (2)							0 (2)			
0-11		(0)	$\frac{2}{(1)}$									
-10	(0)	4 (0)						(0)	(0)			
9			0 (2)	0 (2)		0 (2)						
-8		1 (2)	(3)			(3)	(0)			3 (1)		(0)
7	1 (2)		1 (6)	3 (1)	(2)	0 (2)		(2)	3 (1)		3 (2)	(1)
6	6 (5)	4 (2)	(3)	(2)	$\frac{3}{(1)}$	4 (3)	5 (1)	7 (5)	5 (1)	3 (5)	6 (2)	(3)
5	5 (6)	7 (3)	7 (4)	2 (2)	3 (4)	0 (2)	3 (2)	5 (4)	5 (6)	(3)	(3)	4 (6)
4	10 (6)	6 (7)	4 (10)	6 (4)	3 (1)	3 (6)	7 (3)	(7)	3 (5)	(3)	4 (13)	7 (12)
3	22 (26)	13 (15)	3 (10)	8 (8)	(6)	5 (5)	1 (5)	6 (5)	4 (9)	4 (7)	9 (17)	19 (27)
2	24 (19)	16 (12)	11 (22)	11 (18)	3 (5)	8 (11)	7 (6)	7 (12)	4 (3)	5 (1)	3 (7)	27 (17)
rf—1	42 (4)	73 (6)	77 (5)	66 (8)	36 (12)	42 (23)	44 (22)	40 (23)	50 (14)	51 (24)	51 (13)	43 (13)

INVERSIONS AND STABLE LAYERS OVER INDIA

TABLE 2 (a)—contd

Layer (km)	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oet	Nov	Dec
						MADRA	S					
19-20	(7)		6 (0)	13 (8)	10 (0)		0 (14)				0 (14)	
18-19	22 (6)	4 (19)	8 (9)	22 (6)	14 (0)	8 (0)	6 (10)	0 (25)		5 (0)		5 (6)
17-18	21 (15)	11 (24)	21 (12)	18 (21)	20 (9)	11 (38)	19 (11)	17 (0)	0 (5)	14 (9)	0 (7)	6 (15)
16-17	16 (29)	20 (24)	12 (29)	27 (21)	13 (32)	19 (28)	13 (9)	18 (13)	29 (31)	22 (37)	29 (28)	54 (22)
15-16	14 (7)	10 (7)	3 (10)	2 (4)	11 (9)	21 (3)	23 (12)	18 (21)	23 (14)	$\frac{14}{(12)}$	23 (9)	9 (2)
14-15	2 (4)	3 (3)	5 (2)	2 (5)	3 (2)	3 (4)	3 (7)	5 (5)	4 (9)	7 (5)	3 (5)	(2)
13-14						0 (2)			2 (2)	3 (1)		
12-13												
11-12												
10-11												
9-10	(0)											
8-9												
7-8	4 (2)	(2)	(2)									
6-7	(3)	4 (1)			(4)							
5-6	(3)	3 (1)	(3)	1 (2)	(1)		3 (2)	3 (4)	0 (2)			2 (1)
4-5	4 (3)	4 (3)	5 (5)	4 (3)	3 (3)	0 (4)	1 (3)	3 (7)	3 (4)			1 (2)
3-4	11 (5)	14 (11)	7 (9)	3 (4)		3 (2)	2 (7)	3 (5)	5 (10)	8 (4)	3 (2)	12 (8)
2-3	28 (32)	28 (17)	8 (3)	(0)	2 (1)	4 (0)	3 (2)	0 (4)	(3)	3 (2)	5 (9)	26 (16)
1-2	39 (32)	30 (17)	29 (10)	14 (3)	7 (2)	1 (2)	5 (0)		2 (1)		15 (16)	34 (31)
Surf—1	31 (9)	50 (37)	63 (57)	48 (41)	32 (38)	28 (26)	14 (21)	17 (20)	16 (17)	24 (6)	22 (4)	19 (9)

TABLE 2 (a)-contd

									_			
Layer (km)	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
					VISAK	HAPATN	XAM					
19-20			5 (0)					17 (0)				
18-19	15 (0)	11 (0)	6 (0)	7 (0)	6 (0)	17 (0)						12 (0)
17-18	29 (28)	25 (37)	15 (29)	8 (26)	$\frac{17}{(22)}$	0 (21)	19 (26)	7 (29)	6 (3)	11 (14)	$^{14}_{(33)}$	19 (30)
16-17	23 (32)	$\frac{28}{(42)}$	40 (28)	26 (35)	$\frac{29}{(25)}$	20 (22)	28 (26)	20 (38)	4 (34)	$^{13}_{(23)}$	22 (13)	25 (35)
15-16	$\frac{2}{(17)}$	10 (13)	5 (8)	15 (13)	3 (9)	9 (8)	13 (18)	9 (13)	28 (28)	30 (20)	19 (12)	10 (19)
14-15	4 (3)	(3)	3 (6)	8 (5)	(0)	2 (2)	9 (4)	10 (10)	14 (9)	4 (7)	7 (2)	5 (8)
13-14	3 (3)			0 (2)	(0)		(0)	4 (0)		0 (4)	0 (2)	0 (2)
12-13	4 (1)	2 (0)			(0)							(0)
11-12		4 (1)	0 (4)				0 (2)			(2)		
10-11	0 (3)			3 (0)								(0)
9-10	0 (2)		4 (1)		0 (2)							
8-9	3 (1)	4 (1)	2 (7)	3 (1)		2 (0)						
7-8	2 (7)	3 (2)	6 (3)	1 (3)	2 (2)	3 (3)	2 (4)					
6-7	7 (4)	8 (4)	9 (5)	7 (4)	4 (1)	7 (4)	3 (4)				3 (3)	
5-6	3 (3)	12 (9)	8 (6)	5 (4)	12 (8)	5 (7)	4 (3)	3 (3)	1 (2)	2 (3)	4 (1)	
4-5	8 (10)	13 (7)	12 (10)	13 (12)	5 (5)	4 (4)	5 (3)	3 (4)	1 (2)	5 (3)	6 (4)	(2)
3-4	12 (18)	31 (23)	22 (21)	5 (3)		2 (1)	5 (5)	2 (3)	5 (4)	11 (3)	4 (9)	8 (7)
2-3	30 (30)	40 (27)	10 (4)		1 (3)	2 (2)	6 (9)	1 (5)	2 (6)	6 (7)	12 (14)	22 (25)
1-2	29 (16)	28 (8)	11 (5)	17 (12)	25 (9)	7 (6)	9 (8)	5 (8)	1 (4)	5 (3)	36 (21)	46
Surt-1	38 (23)	70 (53)	80 (78)	100 (92)	82 (82)	71 (57)	38 (26)	32 (17)	43 (12)	41 (7)	30 (11)	50 (18)

TABLE 2 (a)—contd

Layer (km)	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
					В	OMBAY						
19-20			* .	9 (0)	8 (0)			5 (6)	0 (11)			17 (0)
18-19	6 (10)	10 (13)	0 (11)	0 (39)	22 (27)	17 (21)	12 (17)	8 (13)	22 (0)	0 (18)	13 (19)	(10)
17-18	9 (31)	8 (32)	21 (21)	27 (39)	22 (43)	23 (30)	14 (44)	31 (28)	24 (28)	24 (33)	$\frac{32}{(32)}$	$\frac{14}{(38)}$
16-17	24 (32)	15 (24)	21 (33)	35 (26)	21 (31)	20 (19)	25 (19) .	16 (29)	22 (25)	34 (43)	18 (35)	20 (31)
15-16	6 (17)	0 (17)	5 (11)	2 (11)	13 (3)	3 (9)	9 (6)	8 (9)	12 (20)	15 (6)	9 (10)	(20)
14-15	4 (11)	(2)	3 (2)	2 (3)	20 (6)	5 (7)	0 (2)		(3)	(0)	(6)	(11)
13-14	4 (5)	4 (7)	2 (6)	6 (1)	15 (5)						1 (5)	(3)
12-13	7 (5)	4 (3)	3 (1)		12 (0)	1 (2)	0 (2)					(2)
11-12	$^{4}_{(4)}$	1 (2)	0 (5)									8 (3)
10-11	$\frac{2}{(12)}$	5 (0)	8 (4)	(3)	(0)	0 (2)			(3)			(3)
9-10	3 (3)	3 (4)	12 (3)	2 (4)	9 (3)			(2)		0 (2)		5 (2)
8 9	4 (4)	2 (3)	4 (2)	2 (3)	0 (2)		(3)	(3)		(2)	(2)	(4)
7-8	6 (9)	5 (2)	6 (4)	0 (2)	8 (2)	1 (3)	$\frac{3}{(1)}$	1 (2)				(4)
6-7	8 (8)	9 (5)	5 (5)	2 (1)	6 (3)	2 (4)	4 (6)	4 (1)	2 (1)	(3)	3 (1)	$\begin{pmatrix} 3 \\ (1) \end{pmatrix}$
5-6	5 (6)	5 (5)	5 (7)	10 (9)	14 (5)	7 (8)	5 (5)	7 (4)	4 (4)	(3)	4 (3)	(3)
4-5	11 (5)	9 (8)	12 (7)	7 (8)	10 (7)	8 (8)	3 (5)	5 (5)	10 (4)	8 (8)	4 (7)	5 (7)
3-4	23 (17)	19 (20)	6 (5)	3 (1)	3 (1)	3 (3)	5 (3)	5 (6)	7 (9)	25 (15)	18 (11)	(9)
2-3	37 (28)	16 (19)	2 (4)	3 (1)	11 (5)	14 (9)	$^{14}_{(11)}$	21 (12)	10 (16)	10 (9)	20 (17)	
1-2	11 (5)	16 (11)	13 (7)	11 (5)	41 (21)	20 (12)	4 (0)	3 (3)	4 (3)	5 (6)	5 (7)	
Surf—		92 (62)	82 (69)	90 (70)	40 (44)	13 (11)	5 (3)	3 (3)	8 (4)	48 (19)	76 (26)	90 (38)

00 Z Frequencies ; unbracketed

12 Z Frequencies : bracketed

						Frequenc	les of stable	TABLE layers of
Stratum (km) Thickness (km)	Surf-1	1-2	2-3	3-4	4-5	5-6	6-7	7-8
			TR	IVANDRUM				
0-0.20	136 (22)	34 (22)	23 (16)	15 (10)	8 (8)	7 (0)	3 (2)	2 (2)
0.21-0.40	254 (75)	72 (64)	. 94 (116)	53 (54)	28 (26)	25 (16)	10 (15)	5 (2)
0.41-0.60	90 (43)	41 (30)	58 (73)	36 (35)	12 (13)	25 (13)	8 (4)	4 (7)
0.61—0.80	33 (18)	18 (13)	31 (34)	9 (19)	8 (5)	5 (9)	9 (2)	
0.81—1.00	9 (2)	10 (6)	9 (11)	5 (3)	(3)	1 (1)	3 (2)	2 (2)
1.01—1.20	2 (1)	5 (1)	3 (7)	1 (1)	2 (1)		2 (0)	
1 · 21 — 1 · 40	5*		0 (3)		1 (0)		2 (0)	
1 · 41 — 1 · 60	1 (0)		0 (1)	1 (0)				0 (1)
1.61—1.80		0 (2)			0 (1)			,-,
1 · 81—2 · 00								
$> 2 \cdot 00$			(0)					
Thickness no known	ŧ		*					
f ₀₀ N ₀₀	525 1450	180 1450	219 1450	120 1447	$\frac{61}{1439}$	$\frac{63}{1428}$	$\frac{37}{1404}$	13 1362
f_{12} f_{13}	$\frac{161}{1738}$	138 1737	261 1731	$\frac{122}{1724}$	57 1715	39 1703	25 1 6 79	14 1630

 $[\]rm f_{00}\!=\!Total$ frequency of stable layers at 00 Z

 $[\]rm f_{12}{=}Total$ frequency of stable layers at 12 Z

 $[\]rm N_{00}\!=\!Total$ number of ascents which passed through the layer at 00 Z

 $[\]rm N_{12}{=}Total$ number of ascents which passed through the layer at 12 $\,Z$

2 (b) various thicknesses (1956-1960)

8-9	9-10	10-11	11-12	12-13	13-14	14-15	15-16	16-17	17-18	18-19	19-20
· · ·				TR	IVANDI	RUM					
0 (1)					2 (0)						
2 (2)		1 (0)		2 (3)	0 (3)						
	0 (1)			1 (2)	2 (3)						
1 (1)				0 (2)	4 (3)						
		0 (1)	0 (2)		(0)						
0 (1)			0 (1)								
	0 (1)										
			0 (1)		0 (1)						
					1 (0)						
					0 (1)						
					3 (4)						
					(9)	77 (94)	116 (145)	152 (193)	45 (47)	3 (5)	(0
3 1324	0 1266	1 1204	$\begin{array}{c} 0 \\ 1142 \end{array}$	3 1067	13 973	77 856	116 714	152 572	45 411	3 293	24
5 1585	2 1517	$\begin{smallmatrix} & 1\\1436\end{smallmatrix}$	$\begin{array}{c} 4 \\ 1354 \end{array}$	7 1264	$\begin{array}{c} 24 \\ 1167 \end{array}$	$\begin{array}{c} 94 \\ 1037 \end{array}$	145 878	193 673	47 491	5 381	28

Unbracketed frequencies $\,$ relate to 00 Z and bracketed frequencies to 12 Z

								TABLE
Stratum (km) Thickness (km)	Surf-1	1-2	2.3	3-4	4-5	5-6	6-7	7-8
			PORT BL	AIR				
0-0.20	179 (63)	8 (29)	8 (3)	(7)	1 (4)	1 (1)	1 (1)	
0.21-0.40	341 (113)	29 (55)	42 (85)	$\frac{25}{(45)}$	21 (26)	21 (19)	9 (13)	$^{4}_{(4)}$
0.41-0.60	106 (51)	73 (81)	31 (73)	20 (37)	12 (12)	$\frac{14}{(15)}$	7 (11)	(5)
0.61-0.80	28 (7)	10 (7)	11 (20)	5 (9)	(11)	8 (8)	$\begin{pmatrix} 1 \\ (2) \end{pmatrix}$	(3)
· 81—1·00	29 (3)	6 (10)	3 (5)	6 (5)	5 (5)	6 (1)		(0)
.01-1.20	(0)	10 (4)	4 (7)	(1)	3 (2)	0 (2)	1 (1)	(0)
$\cdot 21 - 1 \cdot 40$	(0)		(2)	3 (1)	(1)		(0)	(1)
·41—1·60	(0)	4 (0)	1 (1)		(0)	0 (1)		
61-1.80		2 (1)	1 (1)			(0)		
\cdot 81—2 \cdot 00	1 (0)	0 (1)	0 (1)					
$> 2 \cdot 00$								
hickness not known								(0)
f ₀₀	$\frac{690}{1335}$	$\frac{142}{1315}$	$\frac{101}{1308}$	$\frac{63}{1292}$	$\frac{45}{1276}$	$\frac{51}{1256}$	$\frac{20}{1198}$	$\frac{14}{1100}$
f ₁₂	$\frac{237}{1688}$	$\frac{188}{1686}$	$\frac{198}{1679}$	$\begin{array}{c} 105 \\ 1664 \end{array}$	$61 \\ 1634$	$\begin{array}{c} 47 \\ 1606 \end{array}$	$\frac{28}{1526}$	$\frac{13}{1399}$
			MADR.	AS				
0-0.20	72 (37)	33 (19)	9 (6)	5 (5)	3 (5)		1 (0)	
21-0-40	250 (220)	82 (48)	69 (5%)	<0 (39)	18 (14)	11 (10)	3 (8)	5 (3)
41-0.60	123 (110)	87 (73)	40 (33)	33 (25)	13 (16)	11 (8)	10 (6)	2 (0)
61-0.80	42 (50)	15 (7)	2.5 (24)	16 (20)	6 (9)	2 (10)	5 (1)	3 (2)

Z(D)—conta	2	b)	-contd
------------	---	----	--------

2(b)-	-contd				-							
	8-9	9-10	10-11	11-12	12-13	13-14	14-15	15-16	16-17	17-18	18-19	19-20
_					PO	RT BLA	IR					
		1 (0)										
	1 (4)	0 (1)	2 (0)		(2)	1 (1)						
	0 (6)	2 (1)		2 (0)	0 (1)							
		0 (2)	0 (1)	0 (1)	2 (0)	1 (1)						
		1 (0)		0 (1)								
			1 (0)		1 (0)							
				0 (1)								
		0 (1)										*
		(-)										
		1 (0)			1 (0)							
						2 (0)	(0)					
		1 (0)				1 (4)	21 (18)	27 (28)	43 (35)	19 (9)	3 (5)	
	1 1008	6 903	$\frac{3}{797}$	687	5 585	$\begin{smallmatrix} 5\\494\end{smallmatrix}$	$\frac{22}{401}$	$\frac{27}{309}$	$\frac{43}{221}$	19 156	3 99	65
	$\frac{10}{1280}$	5 1144	$\begin{smallmatrix}&&1\\1002\end{smallmatrix}$	3 860	$\frac{3}{725}$	6 601	$\begin{array}{c} 18 \\ 472 \end{array}$	28 337	$\frac{35}{234}$	9 115	5 67	48
						MADR	AS					
	1 (0)					0 (1)	0 (1)	0 (1)				
	1 (0)	0 (1)	1 (0)			0 (1)	0 (1)	0 (6)	(3)		7	
	(0)	(1)	(0)			1 (1)	0 (1)	(0)	0 (2)	0 (1)		

				-				TABLE
Stratum (km) Thickness (km)	Surf-1	1-2	2-3	3-4	4-5	5-6	6-7	7-8
			MADRAS-	-contd				
0.81-1.00	46 (10)	22 (13)	7 (6)	7 (3)	1 (4)	2 (2)	5 (0)	(2)
1.01-1.20	6 (1)	16 (8)	10 (8)	2 (7)	0 (6)	0 (2)	2 (0)	1 (1)
1 · 21—1 · 40	(0)	5 (4)	(2)	1 (1)	1 (0)			
1 · 41—1 · 60	(0)	4 (3)	2 (0)	1 (1)				
1.61—1.80			2 (0)					
1 · 81—2 · 00	(0)		0 (1)	1 (1)				
$> 2 \cdot 00$								
Thickness not known					1 (0)			
f_{00} N_{00}	542 1792	$\frac{264}{1792}$	$\frac{165}{1782}$	$\frac{106}{1762}$	$\frac{43}{1737}$	$\frac{26}{1708}$	$\frac{26}{1656}$	$\frac{11}{1579}$
$f_{12} \\ N_{12}$	$\frac{428}{1808}$	$\frac{175}{1808}$	$\frac{133}{1801}$	$\frac{102}{1785}$	$\frac{54}{1753}$	$\begin{array}{c} 32 \\ 1733 \end{array}$	$\frac{15}{1669}$	8 1573
			VISAKHAI	PATNAM				
0-0 · 20	140 (79)	26 (19)	3 (13)	7 (8)	5 (6)	3 (5)	1 (1)	0 (2)
0.21-0.40	$474 \\ (421)$	150 (98)	79 (113)	70 (77)	52 (61)	45 (45)	32 (21)	17 (21)
0.41-0.60	127 (112)	58 (47)	46 (31)	28 (29)	20 (16)	15 (13)	9 (12)	5 (12)
0.61-0.80	49 (56)	23 (14)	24 (28)	17 (19)	9 (10)	3 (8)	7 (5)	0 (1)
0.81-1.00	13 (20)	13 (0)	7 (5)	1 (5)	3 (3)	3 (0)	(3)	1 (0)
1 · 01—1 · 20	1 (3)	2 (2)	2 (1)	2 (1)	2 (0)		3 (1)	
1.21-1.40	2 (0)	1 (2)	0 (2)	0 (1)				
1.41—1.60					0 (1)			

. 8-9	9-10	10-11	11-12	12-13	13-14	14-15	15-16	16-17	17-18	18-19	19-20
	- ,			MA	DRAS—c	ontd	14-				
	2 (0)	0 (1)						0 (4)	0 (1)		
1 (0)		(0)		(0)			0 (2)	(5)	0 (1)		
						0 (1)	0 (1)	1 (1)			
							0 (1)	1 (0)	1 (0)		
					1 (0)	0 (1)		0 (2)			
							0 (1)	(3)			
					(3)	8 (13)	10 (14)	16 (32)	9 (7)		
				1 (0)	2 (1)	20 (13)	76 (30)	86 (60)	34 (29)	18 (0)	(0)
$\begin{smallmatrix} &&4\\1502\end{smallmatrix}$	$\frac{2}{1413}$	$\frac{2}{1297}$	0 1185	2 1046	6 944	28 800	86 633	$104 \\ 464$	$\frac{44}{321}$	$\begin{array}{c} 18 \\ 222 \end{array}$	5 185
0 1476	1 1370	1 1261	0 1151	0 1050	$\begin{array}{c} 7 \\ 940 \end{array}$	31 787	56 618	112 437	39 293	$\begin{array}{c} 0 \\ 171 \end{array}$	132
				VIS	SAKHAP.	ATNAM					
1 (0)		0 (1)	0 (1)		0 (1)						
7 (10)	6 (6)	4 (2)	2 (4)	2 (2)	(3)						
7 (4)	2 (2)	1 (1)	3 (2)	3 (1)							
0 (1)		1 (0)	0 (4)		0 (4)						
1 (2)			0 (2)								
0 (1)	1 (0)			1 (0)							
					0 (1)					*	

(0)

								TABLE
Stratum (km) Thickness (km)	Surf-1	1-2	2.3	3-4	4-5	5-6	6-7	7-8
			VISAKHAI	PATNAM—	contd			
1.61-1.80	1							
1.01 0.00	(0)							
1.81-2.00				(0)				
$> 2 \cdot 00$		1		1				
Thickness not known		(0)		(0)				
f_{00}	807	274	161	127	91	69		20
N_{00}	1458	1458	1457	1453	1443	1433	$\frac{54}{1384}$	23 1295
${f N_{12} \atop N_{12}}$	$\frac{691}{1751}$	$\frac{182}{1751}$	$\frac{193}{1747}$	$\frac{140}{1741}$	$\frac{97}{1729}$	$\frac{71}{1718}$	$\frac{43}{1666}$	36 1566
			вомј	BAY				
0-0.20	91	31	29	21				
0-0-20	(66)	(19)	(35)	21 (23)	15 (9)	13 (12)	8 (5)	4 (4)
0.21-0.40	311 (189)	83 (48)	110 (107)	75 (49)	46 (38)	37	29	13
0 · 410 · 60	306	65	88	60	49	(33)	(16) 20	(19) 13
0.61-0.80	(218)	(44)	(60)	(44)	(30)	(29)	(18)	(12)
0.01-0.80	139 (76)	15 (18)	$\frac{35}{(27)}$	24 (20)	20 (23)	15 (8)	10 (12)	2 (4)
0 • 81 — 1 • 00	75 (38)	17 (4)	13 (11)	12 (9)	6 (12)	8 (3)	4 (2)	(1)
1.01—1.20	19	8	3	2	1	0	1	0
1.01 1.40	(12)	(1)	(4)	(1)	(4)	(3)	(2)	(2)
1.21-1.40	9 (4)				(2)	(1)		(1)
1 ⋅ 41 1 ⋅ 60	5	0	2		1	0		(1)
. 61 1 00	(2)	(1)	(0)		(2)	(1)		
1.61-1.80	(0)			(1)				(0)
81-2.00	1	1	1	1-7				(0)
. 2.00	(0)	(0)	(0)					
>2.00				(0)	(0)	0 (1)	0 (1)	
Thickness not known							0 (1)	
f ₀₀	958	220	281	196	140	103	72	35
√00 f ₁₉	1813 605	1813	1807	1803	1791	1784	1736	1652
V ₁₂	1802	$\frac{135}{1802}$	$\frac{244}{1797}$	147 1788	$\frac{120}{1784}$	91 1777	$\frac{57}{1717}$	$\frac{43}{1612}$

 $f_{00}\!=\!Total$ frequency of stable layers at 00 Z

 $[\]rm f_{12}\!=\!Total$ frequency of stable layers at 12 Z $\rm N_{00}\!=\!Total$ number of ascents which passed through the layer at 00 Z

[.] N12 = Total number of ascents which passed through the layer at 12 Z

2(b)-	-contd											
	8-9	9-10	10-11	11-12	12-13	13-14	14-15	15-16	16-17	17-18	18-19	19-20
_					VISAKH	APATN	AM—conte	đ	Į.			
						0 (1)						
					0 (1)	4 (0)	37 (34)	66 (81)	97 (128)	46 (75)	(0)	(0)
	16	9	6 1016	$\frac{5}{911}$	6 817	$\frac{7}{720}$	$\frac{37}{624}$	66 508	97 417	$\frac{46}{293}$	$\frac{11}{195}$	$\begin{smallmatrix}2\\142\end{smallmatrix}$
	1200 18	1109 8	4	13	4	10	34	81	128 438	75 301	0 210	$^{0}_{152}$
	1471	1357	1241	1124	997	866	739	590	490	301	210	102
						вомва	Y					
	2	2	3	4	1 1)	2 (1)						
	(2) 10	(4) 10	(1) 4	(4) 7	9	7						
	(17)	(9)	(12) 12	(4) 4	(7) 9	(7) • 4						
	5 (11)	7 (6)	(10)	(3)	(1)	(6)						
	5 (6)	2 (2)	(2)	2 (4)	(1)	1 (4)						
	1	1	4 (1)	(3)	0 (3)	2 (1)						
	(1)	(2)	1	0	1	1						
	,	(0)	(0)	(1)	(0)	(1)						
	(0)					(1)			0			٠,
				0 (1)	(0)		(0)	(0)	(0)	(0)	(0)	(0)
				1 (0)		(0)						
				(0)		1	8	1	4	4		
						(1)	(0)	(0)	(0)	(0)		
			0 (1)		0 (1)	(1)	(31)	38 (61)	82 (108)	51 (87)	(25)	(2)
	24	23	25	$\frac{19}{1241}$	$\frac{22}{1111}$	$\frac{20}{982}$	20 776	44 610	94 442	66 300	$\frac{19}{193}$	$\frac{4}{128}$
	1564 37	1463 23	1352 27	20	14	23	31	61	108 357	87 258	25 182	2 134
	1512	1389	1261	1133	990	835	870	515	991	200	102	194

Unbracketed frequencies $\,$ relate to 00 Z and bracketed frequencies to 12 Z