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ABSTRACT. Earlier investigations into the epochal behaviour of fluctuations in All India Summer Monsoon
Rainfall (AISMR) have indicated the existence of a Low Frequency Mode (LFM) in the 60-70 years range. One of the
probable sources of this variability may be due to changes in solar irradiance. To investigate this, time series of 128-year
solar irradiance data from 1871-1998 has been examined. The Wavelet Transform (WT) method is applied to extract the
LFM from these time series, which show a very good correspondence. A case study has been carried out to test the
sensitivity of AISMR 1o solar irradiance. The General Circulation Model (GCM) of the Center for Ocean-Land-
Atmosphere (COLA) has been integrated in the control run (using the climatological value of solar constant ie. 1365
Wm?) and in the enhanced solar constant condition (enhanced by 10 Wm?) for summer monsoon season of 1986. The
study shows that the large scale atmospheric circulation over the Indian region, in the enhanced solar constant scenario
is favourable to good monsoon activity. A conceptual model for the impact of solar irradiance on the AISMR at LFM is
also suggested.
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1. existence of LFM in AISMR. The ~ 60-year period-wave

was described in terms of epochal behaviour of AISMR.

Introduction

All India Summer Monsoon Rainfall (AISMR)
exhibits variability on the scales ranging from subsynoptic
to climatic scales. The intraseasonal and interannual
variabilities of AISMR have been extensively studied for
variety of scientific and practical applications. However
the enhanced interest in Low Frequency Variability (LFM)
of AISMR is in concurrence with recent interest in the
long-term climate change studies. Joseph (1976), using
AISMR data for the period 1891 to 1974, showed the

(67)

He identified three epochs viz. epoch A: 1891-1920, epoch
B: 1930-1960, and epoch C: 1965-1974. The epochs A
and C were characterized by many years of monsoon
failures leading to severe droughts while epoch B was
characterized by less number of monsoon failures. Mooley
and Parthasarathy (1984) have applied 10-year moving
averages on 108 years (1871-1978) AISMR data and
ascertained the statistical significance (at 5% level) of the
epochs. Verma ef al. (1985) studied the decadal variability
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over the period 1881-1980. The study revealed the
existence of three/four contiguous decades of above
normal AISMR activity followed by the three/four
contiguous decades of below normal AISMR  activity,
which substantiated the LFM identified by Joseph (1976)
and Mooley and Parthasarathy (1984). They further
showed that the decadal variability in AISMR was
significantly related to decadal variability of Northern
hemispheric mean surface air temperature at 5% level of
significance. Pant efr al. (1988) extensively studied the
LFM in AISMR using smoothing method of cubic spline
to AISMR time series and other global and regional
parameters. They demonstrated that the LEM was not only
limited to seasonal monsoon rainfall, but also found in the
various monsoon related parameters such as (1) monsoon
onset dates over Kerala, (2) storms and depressions in Bay
of Bengal and Arabian Sea during monsoon, and (3)
number of break-monsoon days in July and August. The
epochal behaviour was also noticed in the associations of
AISMR  with some of the global
(Krishnakumar et al. 1995).

parame ers

In the recent years there has been a major revival of
interest in AISMR-LFM which has formed the major
objective of the intensive global observational, analysis

and modelling programmes such as CLIVAR. Temporal
changes in the observed association between ENSO and
AISMR have also provided incentive for study of LEM.
In the last 8 years of the present decade, there was a

prolonged ENSO from 1991-94. and ENSO like
conditions in the year 1997, however the AISMR activity
remained normal during these years. One of the
explanations offered to this apparent de-association
between AISMR and ENSO was based on the epochal
behaviour of AISMR. Kripalani and Kulkarni (1997)
analysed 125-year (1871-1996) of AISMR data using
Cramer’s t-statistic for 1l-year running means. They
showed that the impact of El-Nino (La Nina) on the
AISMR was more severe during the below (above) normal
epochs. They further showed that the AISMR had entered
into above normal epoch in the year 1990, which might
have caused to lessen the impact of ENSO in the present
decade. This study has shown that the LFM is indeed
important in modulating the performance of AISMR on
the interannual scale also.

As oceans have a long memory and enormous
heat capacity, the long term oceanic variability on the
scale of LFM has been speculated as the underlying
mechanism for  AISMR- LFM. However not many
studies are carried out to establish the relation between
the two. Bhalme er al. (1997) examined SSTs of northern
and southern hemispheric oceans for the 120-year
(1871-1990) period. They defined an index based on the

southern hemispheric SSTs. They showed that the two
epochs found by Joseph (1976) viz. A and C having
frequent occurrences of droughts broadly coincided with
the warm anomalies of southern hemispheric SSTs. It is
well known fact that the SSTs over equatorial Pacific
Ocean have profound influence on the interannual
variability of AISMR. Gu and Philander (1995) observed
the existence of the LFM in the SST variability of
equatorial west Pacific Ocean. Sikka(1980) pointed out
that the epochs of differing frequencies of monsoon
droughts corresponded to the epochs of differing
frequencies of the El Nino.

As yet, here is no clear understanding regarding the
exact source for the LFM in the oceanic surface
temperature variability. Some of the probable sources
considered are: (1) changes in deep-water formation and
global thermohaline circulation, (2) climatic fluctuations
arising from the strong nonlinearity of the climate system.
(3) stochastic fluctuations and (4) solar variability. Reid
(1987) showed that the globally Il-year-averaged SSTs
varied in phase with ~80 year cycle of the solar activity.
Reid (1991) further showed that, this in-phase relationship
was also found in the surface temperature variations in all
the three major oceans. Therefore it was argued that the
LEM in SSTs was more likely due to solar forcing rather
than due to other sources described above. This formed
the basis for looking for the source of AISMR-LFM in the
LEM of solar variability. Mehta and Lau (1997). using the
Jow-pass filtered (longer than 24 years) time series of solar
irradiance and AISMR, showed the existence of the
relationship between the two. They also showed the out of
phase relationship between solar irradiance and equatorial
central-east Pacific SSTs, at the scale of LFM. They put
the following hypothesis for the monsoon-solar irradiance
relationship.

The seasonal reversal of the monsoon winds
over India is controlled by the seasonal reversal of the
land-ocean  heating  gradient.  Since  the  Indian
subcontinental land mass (including the Tibetan plateau)
has much smaller heat capacity than the Indian Ocean, the
Arabian Sea, and the Bay of Bengal, the temperature of
the land mass would increase/decrease  almost
simultancously  with  increasing/decreasing solar
irradiance. Although* the amplitude of the multidecadal
solar irradiance variability is small, a positive anomaly
would bias the solar irradiance incident on the monsoon
region towards larger values for 20-30 years. A long-lived,
above-normal irradiance anomaly would strengthen the
land-ocean-heating gradient and, in turn the monsoon
winds. An increase in evaporation and for an above normal
moisture flux might result in above-normal rainfall over
India.
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Figs. 1{a-c). (a) Time series of sunspots (from Nat. Geophys. Data Center). Wolf's sunspot number since
1750 A. D. (b) Wavelet power spectrum. The power has been scaled by the time series
variance (s); counter levels are chosen so that 75%, 50%, 25% of the wavelet power is above
each level, respectively. Black counter is the 10% significance level, using the global wavelet
spectrum as background and (c) The global wavelet power spectrum. The dashed line is the
10% significance level for the global wavelet spectrum, assuming a white-noise background
(Taken from Torrence and Compo 1999)

In this paper, an attempt is made to examine further
the relationship between the solar irradiance and AISMR.
Mehata and Lau (1997) have used low-pass-filtered (with
the period 24-years) time series. In addition to LFM, the
solar irradiance has a large power in the modes with
periods 46, and 51 years. We have used Wavelet
Transform (WT) to extract the variability exclusively
corresponding to ~64 year period which provided better
relationship between the two. Further we tested the above-
referred hypothesis using the General-Circulation Model
(GCM). A sensitivity experiment was carried out to test
the impact of change in the solar irradiance on the large-
scale atmospheric circulation over India during the
monsoon season using COLA GCM. The objective of the
GCM study was to examine whether the atmospheric
circulation in the enhanced solar irradiance scenario is
conducive to good monsoon activity.

2.  Solar and AISMR covariability

2.1, Previous studies with the sunspot numbers

The Sun’s output varies on an enormous range of
time scales from minutes in the case of flares, to the

billion-year time scale of solar evolution. The variations
are measured by different indices such as magnetic
activity, prominanences, faculae, and number of sunspots.
The most of these indices correlate very well with the
sunspot numbers. Due to the availability of long records of
sunspot numbers, the solar variability studies have been
carried out mainly using the sunspot numbers. The
analysis of sunspot numbers has shown the existence of
modes with period 5.5, 10-12, 22-23, 40-50, 80-90 years
(Lamb, 1972, Herman and Goldberg 1985).

Several studies in the past have been carried out to
correlate the sunspots with the monsoon activity. Walker
(1915) showed that the correlation coefficient (CC) of
sunspots with total rainfall over the plains of India, as
given by all the stations in existence from 1865 - 1912 was
0.26. He further showed that the solar activity affected the
monsoon as a whole, but not the irregularities in the
geographical distribution of the rainfall of India.
Jagannathan and Bhalme (1973) found that the mean
rainfall was larger during sunspot maximum than that in
sunspot minimum over north India and the central parts of
peninsula. Over the rest of the country, the rainfall during
the sunspot minimum is larger than that during the sunspot
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Fig. 2. Reconstructed solar irradiance (Wm %) al the top of the atmosphere from 1610 to the present

(data from Lean ef al. 1995)

maximum. Bhalme and Mooley (1981) provided evidence
of an approximately 22-year cycle in the fluctuations of
flood area indices over India for the 89-year period 1891-
1979, showing strong coherence with the double (Hale)
sunspot cycle. Furthermore, they were able to demonstrate
the consistent occurrence of large-scale flood events in the
major sunspot cycle by harmonic dial analysis.
Ananthakrishnan and  Parthasarathy (1984) found
significant excess rainfall years around the peak phase of
alternate sunspot cycles. Bhalme and Jadhav (1984)
showed the strong tendency for occurrence of floods in the
positive (major) sunspot cycle than in the negative (minor)
sunspot cycle. They further suggested that large-scale
flood recurrence over India was in some manner
controlled by long-term solar activity.

2.2. Evidence for LFM in solar variability

The above referred studies examined the relationship
on the scales extending up to ~22-year period. One of the
scales in the sunspot spectrum longer than ~22-year period
and of interest to us is around 70 years. The variability on
this scale has been found in many solar-terrestrial physics
phenomena. Gilliland (1981,1982) found the variations of
solar radius with the time scale of ~ 80-year. Johnsen
(1970) analyzed the ice accumulation during the last 800-
year period. He found two peaks corresponding to climatic
oscillations with periods of 78 and 181 years. Feynman
and Fougere (1984) observed that the MEM analysis of
number of aurora in Europe from A.D. 450-1450 showed
strong stable peak at period 88.4-year. Fig. I(a) shows
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Fig. 3. Fast Fourier Transform of solar irradiance time series
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Figs. 4(a-c).  (a) Time series of AISMR (deviation from normal in mm), (b) Wavelet power spectrum.
The power has been scaled by the time series variance (s:); counter levels are chosen so
that 75%, 50%, 25% of the wavelet power is above each level, respectively. Black counter
is the 10% significance level, using the global wavelet spectrum as background and (c)
The global wavelet power spectrum. The dashed line is the 10% significance level for the

global wavelet spectrum, assuming a white-noise background (Taken from Torrence and
Compo 1999)
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Fig. 5. Eleven-ycar running means of solar irradiance (Wm *) (right axis) and AISMR (¢m) (left axis) time series

Wolf’s sunspot numbers since 1750 A. D. The power
spectrum in the Fig. 1(c) shows the existence of LFM in
the sunspot number time series (Torrence and Compo
1999).

Since 1850, industrially produced concentrations of
green house gases CO;, CH,, N>O, CFC, and tropospheric
sulphate aerosols have increased (Houghton er al. 1995).
The overall activity level of the sun has risen too (NRC
1994). Many fairly simple numerical models of terrestrial
climate have been developed in recent years in order to
estimate the relative importance of CO, solar and volcanic
forcing. Gilliland and Schneider (1984) simulated the
climate of past century using box climate model. They
found that the variances accounted by these three forcings
in the simulated mean surface temperature were 32%, 11%
and 38% respectively. Kelly and Wigley (1992) used
nergy balance model to simulate the
reenhouse and solar forcings over the period 1765-1985.

effects  of
g

These studies incorporated solar forcing on the scale of

LEM in the solar irradiance. Their study revealed that this
forcing combination could explain many features of the
surface temperature variability. These studies clearly bring
out the existence of LFM in the solar variability.

2.3. Empirical study between AISMR and solar
variability ar LFM

Joseph (1976) suggested the empirical relation
between AISMR and solar activity on the low frequency
scale. He showed that the monsoon epochs A and C were
the epochs having low sunspot activity and epoch B was
the epoch of high sunspot activity. Recently Lean er al.
(1995) reconstructed solar irradiance data at the top of the
atmosphere, making use of sunspot numbers and
information about solar faculae since 1600 A.D. (Fig. 2).
The series has mean 1365.64 Wm™ and standard deviation
0.97 Wm™. The two epochs of no sunspat activity
corresponding to Mounder minimum and Dolton minimum
are clearly seen from the figure. It further shows the
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Fig. 6. Cormrelation between |1-year-averaged solar irradiance and
AISMR time series computed in 31-year running window. The
harizontal line is for 1% level of significance

increasing trend in the solar irradiance from 1810 onwards
to date. The solar irradiance increased from 1364.6 Wm™
in the year 1810 to 1368.2 Wm™ in the year 1989. Thus
there is a net increase of 3.6 Wm™ in the last ~200 years.
The correlation of reconstructed solar irradiance and
northern hemispheric surface temperature is 0.86 in the
pre-industrial period from 1610-1800, implying a
predominant solar influence. Extending this correlation to
the present suggests that solar forcing may have
contributed about half of observed 0.55° C surface
warming since 1860 (Lean er al. 1995). Fig. 3 depicts the
Fast Fourier Transform (FFT) of the series. The figure
reveals LFM along with other prominent periods viz.
256.0, 170.7, 102.0, 51.2, 46.5, 24.4, 12.2, 8.1, 6.1, and
around 2 years.

The Il-year time averaging is applied to the solar
irradiance and AISMR data for the period 1871-1998. The
data for AISMR has been taken from Parthasarathy et al.
(1992) up to 1991 and updated up to 1998. The time series
has mean 85.14 ¢m and standard deviation 8.4 cm. Fig.
4(a) shows AISMR time series and 4(c) shows the power
spectrum of it. It can be seen that a significant power
resides in the LFM. The standard deviations of smoothed
series of solar irradiance and AISMR are 0.73 Wm™
and 2.4 cm respectively. The variances retained in the
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Fig. 7. Reconstructed 64-year mode in solar irradiance (a) and
AISMR (b)

smoothed solar irradiance and AISMR time series are
56.6% and 8.2% respectively. Fig. 5 shows the plots of
| 1-year-averaged AISMR and solar irradiance. The most
remarkable similarity in the two figures is observed over
the period 1910-1980. Fig. 6 shows the correlation in the
two series computed for 31-year running window. The

correlation is significant at 1% level during the period
1915-1948 and 1955-1968. The I l-year averaging retains
only the LFM in AISMR but retains additional modes of
period ~24, ~40-50 years in the solar irradiance variability
which may be the reason for lack of agreement over the
entire record.

For removing these modes from the solar irradiance
time series, it is required to average the time series for
more than 24-year period. This will reduce the length of
the series drastically. Hence a modern technique of WT
has been applied to extract the variability corresponding to
LFM from both the series. The concept of WT was
introduced in early 1980’s in a series of papers by Morlet
et al. (1982a,b), Grossmann and Morlet (1984). Since it’s
formalism and some significant work by Daubechies
(1988, 1992), and Chui (1992), WT has emerged asa
powerful tool for analysing localized variations of power
within the non-stationary time series. Torrence and Compo
(1998) have provided all essential details necessary for
wavelet analysis. Figs. 1(b) and 4(b) show the wavelet
power spectra of sunspot numbers and AISMR time series
using continuous Morlet function (Torrence and Compo
1999). The activity of LFM is seen to be present
throughout the period in both the series. The discrete WT
has an advantage that it is better localised in the frequency
domain. The discrete Haar WT is applied to decompose
the time series of AISMR and solar irradiance into
7 dyadic scales with periods 2, 4, 8, 16, 32, 64, and 128
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(2) COLA GCM simulated 850 hPa temperature anomalies (from model climatology) in the climatological
SC run of scason 1986, (b) same as (a) but Tor 200 hPa. {(¢) same as (a) bul for the enhanced solar constant
scenanio, and (d) same as (b) but for the enhanced solar constant scenario
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Figs. 9(a&b). (a) COLA GCM simulated 850 hPa wind anomalies
(from model climatology) in the climatological SC run
of monsoon season 1986, and (b) same as (a) but for
enhanced Solar constant scenario

years. The time series corresponding to 64-year period
mode was reconstructed. The method of computation and
other details of the Haar WT are given in Kulkarni et al.
(1999), and Kulkarni (2000). Fig. 7 shows the LFM signal
in the solar irradiance and AISMR. The variance
accounted by these further smoothed series reduces to 4%
and 9% in AISMR and solar variability respectively. The
nonstationary character of LEM is clearly observed in both
the series. The AISMR- LFM in the second half period is
slightly more active (having larger amplitude), whereas
reverse is observed in the case of solar irradiance. The
most important feature observed is the very close
relationship between the two.
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Figs. 10 (a&b). (a) COLA GCM simulated 200 hPa wind anomalies
(from model climatology) in the climatological SC run
of monsoon season 1986 and (b) same as (a) but for
enhanced Solar constant scenario

3. GCM sensitivity experiments

Numerical simulations of the impact of solar
variability on climate fall into four categories. Category
first comprises of GCM experiments, confined mostly to
the lower atmosphere, in which enhanced solar activity is
represented by changes in spectrally integrated solar
constant (SC). The second category consists of the GCM
studies of the dynamical response of the middle
atmosphere to changes in solar ultraviolet. These two
categories do not include interactive photochemistry. The
third category consists of studies with the photochemical
response of middle atmosphere to enhanced solar
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Figs. 11{a&b). (a) COLA GCM simulated 200 hPa divergence anomalies (from model climatology) in the climatological 5C
run of monsoon season 1986 and (b) same as (a) but for enhanced Solar constant scenario
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Figs. 12(a&b). (a) COLA GCM simulated seasonal rainfall anomalies (from model climatology) in
the climatological SC run of monsoon season 1986, (b) same as (a) but for enhanced
Solar constant scenario
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ultraviolet. The fourth category, which is still in infancy.
attempts to represent solar variability by realistic changes
in both irrandiance and ozone concentrations (Haigh
1999). Here we focus our study on the category first i.e.
the impact of changes in spectrally integrated SC.

Wetherald and Manabe(1975) used simplified GCM
with a swamp ocean and ice-albedo feedback. They
observed that the response of the tropospheric zonal
mean temperature o a 2% increase in the SC was very
similar to that which they calculated for a doubling of the
concentration of CO,. The greatest warming was found in
the tropical upper troposphere where moist convection
dominates. They further observed a cooling in the tropical
lower stratosphere associated with an increase in
tropopause height due to enhanced tropical convection.
Later GCM studies of the impact of changes in SC have
revealed similar responses in the cooling of lower
stratosphere and increase in tropical convection (Cubash er
al. 1997; Nesme-Ribes er al. 1993; Sadourney 1994:
Royer et al. 1994). Goddard Institute for Space Studies

The suggested mechanism of impact of LFM-solar irradiance on LFM-AISMR

(GISS) GCM estimates a global surface temperature
decrease by 0.47°C for 0.25% decrease in solar irradiance
(Rind and Overpeck 1993). But observed
was non-uniform over the globe. The continental areas
along 40° N were cooler by 1°C. Equilibrium simulations
of climate response to changing solar radiation using
Laboratory de  Meteorogie  Dynamique  (LMD)
atmospheric  GCM  estimated  surface  temperature
reductions of 1.5° C for a 0.4% irradiance decrease.

cooling

In the present study, we have used, COLA GCM with
triangular truncation at wave number 30. The vertical
structure in the model is represented by 18 unevenly
spaced levels using sigma coordinate system. The model
is based on a modified version of NMC global spectral
model used for medium-range weather forecasting. The
formulation of the model is given in Sela (1980) and
modified version in Kinter er al. (1988). Gadgil and Sajani
(1998) compared the monsoon simulation by all the GCMs
and classified them into A, B. and C categories, A being
the best. The COLA GCM falls into category A2.
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To test the hypothesis put forward by Mehta and Lau
(1997), we have carried out a case study using COLA
GCM. The impact of increase in the solar radiation
on AISMR occurs mainly through two ways: (1) direct
increase in the land-ocean gradient, and (2) increase in
the SSTs in such a way as to favour the monsoon
circulation (i.e. increase in the equatorial west Pacific
SSTs). In the case study, we have integrated the COLA
model for monsoon season of 1986. The year 1986
was a weak monsoon year with summer monsoon
rainfall 74.6 cm about 12 cm below normal. The
equatorial central and east Pacific SSTs were above
normal. Kripalani and Kulkarni (1997) showed that
the impact of El Nino is reduced in the above normal
epoch of AISMR. The selection of the year is done
to test this another hypothesis. In real conditions the
increase in the solar irradiance at LFM is about 0.25%. In
order to take into account the impact of enhanced SC on
AISMR, through SSTs, we have taken the value of
increased SC by 10 Wm™ (~ 0.75%). The atmospheric
initial conditions were of | May 1986. Figs. 8(a-d) show
the anomalies in the temperature distribution in the control
and enhanced SC run. The anomalies are estimated with
respect to model climatology. The SSTs over the central-
east Pacific in this year were above normal, consequently
there was an eastward shift in the oceanic convective zone.
The positive anomalies of 3.5°C over the central Pacific
Ocean (Fig. 8b) are indicative of the observed eastward
shift in the convective zone. It is seen that there is an
increase of temperature especially over the land region, at
850 hPa (Fig. 8c) and 200 hPa (Fig. 8d) in the enhanced
SC experiment, predominantly at 40°N latitude. The
results are in good agreement with those of Hansen et al.
(1997) and Lean and Rind (1998). However over the
central Indian region, at 850 hPa, there is decrease of the
temperature, probably due to increase in the monsoon
rainfall. At 200 hPa there is an increase in the temperature
by 0.5°C around 30° N over the Indian region. There is
not much change over the oceanic regions south of
India. This eventually increases the south-north
temperature gradient by ~12-15% in the enhanced SC
scenario.

Figs. 9 (a&b) show wind anomalies at 850 hPa in the
two conditions. As 1986 was a weak monsoon year, there
was a weak cross equatorial flow and also weak low level
jet at 850 hPa. These features are seen from Fig. 9(a). In
the enhanced SC scenario, increase in the south westerlies
over the Arabian Sea are noticed (Fig. 9b). At 200 hPa, in
the control run, the return northerly flow was weak and
westerly anomalies span the equatorial region (Fig. 10 a).
In the enhanced SC case, the northerly return flow
intensified and extended southwards to 5° S latitude (Fig.
10 b). The divergence pattern at 200 hPa (Figs. 11 a & b)

showed the westward shift and intensification in the
enhanced SC scenario. Figs. 12 (a&b) show rainfall
anomalies in the two conditions. The anomalies changed
from negative in the control run to positive in the
enhanced SC scenario over the central India. The seasonal
rainfall increased from 81 c¢m in the control run to 87 cm
in the enhanced SC condition.

Thus the study clearly shows that the change in the
atmosphere circulations in the enhanced SC scenario is
conducive to increase the monsoon rainfall. Here, as
a simplified case we have considered the period of LFM
as 64 vyears. In the real situations the period may
very between 60-80 years. Hence it would be difficult
to pinpoint the exact year of transition from the
negative phase to the positive phase of LFM in the solar
irradiance. As suggested by Kripalani and Kulkarni
(1997), transition might have occurred around 1990, then
one can understand the reduced impact of El Nino in the
years 1994 and 1997. It would be difficult to arrive at a
general conclusion based on the single case study,
nevertheless the study has undoubtedly provided the
evidence of the impact of solar irradiance on AISMR at
low frequency scale.

4. Conclusions

The LFM in AISMR has been shown to be correlated
very well with the LFM in solar irradiance. The sensitivity
study using COLA GCM has been carried out to test
the hypothesis regarding AISMR-solar  variability
relationship suggested by Mehta and Lau (1997).
The study showed that the hypothesis appears to be true in
the case study of a seasonal model integration. Based
on the previous statistical and modelling studies and
results from this study, a modified mechanism of
operation between the two has been suggested. In
this mechanism, the role played by SSTs over west
equatorial Pacific have also been taken into account. This
is shown in the Fig. 13. The LFM in the solar irradiance
generates the variability on the scale of LFM in the
different ocean basins. This generated LFM in the
SST variability is in phase with the solar variability
(Reid 1991). In the positive phase of solar irradiance,
SSTs over Indian ocean are warmer (Reid 1991) and
over the east-central-Pacific are cooler (Mehta and
Lau 1997). It is well known that the SSTs over east
and west equatorial pacific are out of phase, the
equatorial west Pacific are warmer in the positive phase
of LFM of solar irradiance. In the positive phase of
solar irradiance, the temperatures over the Indian land
region will increase. This generates the increased-land-
ocean contrast in the positive phase of the solar anomaly.
As the SSTs over Indian Ocean are also high, there is
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an increased moisture flux over the monsoon region.
Also the high SSTs over equatorial west Pacific provides
additional low level convergence in this region.
The additional moisture flux and the low level
convergence provide additional latent heat flux over the
Indian land region, which enhances the land-ocean
contrast, leading to favourable conditions for the
monsoon.

The change in the solar irradiance on the scale of
LFM 1s about 0.15%. However, small positive anomaly
in the solar irradiance, consistently heat the oceans
which have large heat storage capacity and long memory.
The co-operative action of increased moisture flux
over the Indian Ocean, increased low level convergence
over west equatorial Pacific and increased land ocean
contrast together tries to bring AISMR anomalies to
the positive side. Some of the shortcomings of the
present study are that in the GCM simulation, the spectral
dependence of solar modulation is not considered.
The photochemical response of ozone to changes in the
solar radiation is also not taken into account. Furthermore,
there is a need for long-term integration of coupled GCM
to estimate the response of increase in SC
comprehensively.
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