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Interactions among deep convection, sea surface temperature and
radiation in the Asian monsoon region
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ABSTRACT. The climatic interactions among deep convection, sea surface temperature and radiation in the
Asian monsoon region have been examined using various satellite-derived data sets of the period 1983-90. Annual
average Frequency of Deep Convection (FDC) is maximum over the equatorial east Indian ocean and adjoining west
Pacific and Indonesian region. Maximum FDC zone shifts to Bay of Bengal during the monsoon (June-September)
scason.

There is a weak relationship between the variations in FDC and SST in the Indian ocean. Deep convective activity
was suppressed over most of the tropical Indian ocean during El Nifio of 1987 in spite of warmer SSTs. The pattern of
interannual variation between FDC and SST behaves differently in the Indian ocean basin as compared to the Pacific
ocean basin. Deep convective clouds interact with radiation very effectively in the Asian monsoon region to cause large
net negative cloud radiative forcing. Variation in FDC explains more than 70% of the variation in surface shortwave
cloud radiative forcing (SWCRF) and long wave cloud radiative forcing (LWCRF) in the atmosphere.

On inter-annual scale, warmer S8Ts may not necessarily increase deep convection in the Indian ocean, However,
the inter-annual vanation of deep convective clouds influences significantly the radiative budget of the surface-
atmosphere system in the Asian monsoon region. The satellite observations suggest that warmer SSTs in the Indian
ocean might have resulted from an increase in the absorbed solar radiation at the surface due to a reduction in decp
conveclive cloud cover

Key words —  Cloud radiative forcing, Deep convective cloud, Asian monsoon region, Sea surface temperature,
Cloud-climate interaction.
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1. Introduction

Cloud -climate interaction is an area of significant
uncertainty in projecting future climate change caused by
anthropogenic changes. Variation of clouds associated
with climate change can either amplify or decrease the
direct radiative forcing due to increase in greenhouse
gases ( Mitchell er al. 1989, Wetherald and Manabe
1988). A recent study by Cess er al. (1990) showed that
there are still large disagreements in the longwave and
shortwave components of cloud feedbacks in GCM
simulations.

Clouds exert a strong influence on radiative transfer
within the earth’s atmosphere. The Cloud Radiative
Forcing (CRF) affects circulations of the atmosphere and
ocean by altering surface energy fluxes and atmospheric
heating rates. Many studies (Slingo and Slingo 1988,
Randall er al. 1989, Sherwood et al. 1994) have confirmed
that tropical circulations are substantially altered if CRF is
neglected. CRF at the surface is a major component of
surface energy fluxes and contributes directly to ocean
circulations (Chen er al. 1994).

Global distributions of cloud radiative forcing at the
top of the atmosphere (TOA) can be derived from satellite
measurements( Ramanathan 1987, Ramanathan er al.
1989). Previous studies ( Kiehl 1994, Weare 1995, Pai and
Rajeevan 1998, Rajeevan and Srinivasan 2000) suggest
that both Short-wave(SW) and Long-wave(LW) cloud
radiative forcing is caused by high clouds( clouds with top
below 440 hPa) which include the deep convective clouds.
Kiehl and Ramanathan (1990) and Kiehl (1994) showed
that over the deep convective regions in the west Pacific,
there is a near cancellation between SW and LW cloud
radiative forcing. Rajeevan and Srinivasan (2000) showed
that conclusion of near cancellation between and Long-
wave Cloud radiative forcing (LWCRF) and Short-wave
cloud radiative forcing(SWCRF) has been invalid in the
Asian monsoon region during June-September due to the
presence of optically thick high clouds, with amounts
exceeding 50%. It was also shown that Asian monsoon
region is unique in the tropical region for having large
amounts of optically thick high and deep convective
clouds thus causing large negative net cloud forcing.

Another aspect of special interest is the relationship
between deep convection and sea surface temperatures
( Ramanathan and Collins 1991, Fu et al. 1996. Hartmann
and Michelson 1993). The variation of tropical convection
over oceans with SST was examined by Gadgil er al.
(1984),Graham and Barnett (1987) and Waliser er al.
(1993). They have suggested a highly non-linear
relationship between SST and tropical convection. Bhat et

al. (1996) suggested a strong link between the frequency
of tropical convection and Convective Available Potential
Energy (CAPE). Zhang er al. (1996) studied the global as
well as regional aspects of the relationship between cloud
radiative forcing and SSTs. They showed that warmer
tropical oceans as a whole are associated with less long
wave greenhouse effect of clouds and less cloud reflection
of solar radiation to the space.

The present study is designed to examine (i) the
spatial and temporal variation of Frequency of Deep
Convection (FDC) in the Asian monsoon region, (ii) the
local and remote (teleconnection) response of the deep
convective clouds to sea surface temperatures (ifi) the
interaction between the deep convective clouds and
radiation in the Asian monsoon region and (iv) the inter
annual variability of FDC and its relationship with SST
and its role on modulating the surface and atmospheric
energy budget.

2. Data sets and methodology
2.1. Frequency of Deep Convection (FDC)

In this study, observations of high optically thick
cloud cover derived from the International Satellite Cloud
Climatology Project (ISCCP) was used as a proxy of deep
convection. Deep convective cloud is diagnosed by using
the ISCCP C2 monthly mean cloud data set (Rossow and
Schitfer 1991). Deep convective clouds are defined as
those cloudy pixels for which the optical thickness is
greater than 22.4 and the cloud top pressure is lower than
440 hPa. The optical thickness threshold is approximately
equivalent to an albedo of 0.7 (Fu er al. 1990). FDC
represents the number of pixels classified as deep
convective clouds in a 2.5" x 2.5° latitude-longitude grid
cell which is at a scale comparable to a deep convective
cluster and can be interpreted as an index of fractional
amount of deep convective clouds. The features of FDC in
the ISCCP data set are consistent with other satellite
estimates of convective activity (Waliser et al. 1993).

2.2. Radiative Fluxes and SST

The SW and LW radiative fluxes at TOA have been
taken from the Earth Radiation Budget Experiment
(ERBE) ( Barkstrom 1984). The data include the fluxes
under both all sky as well as clear sky conditions gridded
at a 2.5 x 2.5% latitude X longitude resolution. In the
ERBE data, there are few grid boxes with missing clear
sky fluxes. These missing clear sky fluxes are estimated
by filling with the mean of the clear sky fluxes at the
nearest grid boxes (Zhang er al. 1996). Since the clear sky
fluxes over the oceans are relatively uniform on small
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Fig.1.

Geographical maps of (a) the annual average frequency of deep convection (FDC) (top), (b)

average FDC during summer monsoon (June-September) (middle) and (c) standard deviation of

FDC during the summer monsoon (bottom). Period

4%(middle) and 1%(bottom)

scales, the errors resulting from the filling are expected to
be small.

The surface radiative fluxes cannot be measured by
satellites. However they can be realistically determined
using a radiative transfer model using the observed

: 1983-90. Contour interval 2%(top),

atmospheric parameters and cloud fields and observed
TOA radiative fluxes measured by the satellites. The
surface SW radiative flux data was taken from the Version
[.1 Surface Radiation Budget (SRB) SW products for
the period March 1985 through December 1988. Inputs to
this product are from the ISCCP and ERBE. It uses two
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methods known as Pinker algorithm and Staylor algorithm
to estimate surface SW radiative fluxes ( Whitlock er al.
1995). In this study, the Pinker algorithm was used. In this
method, the all sky and clear sky upward and downward
fluxes at TOA and surface were computed from the mean
cloudy and clear radiances and from cloud fractions of the
ISCCP CI data, using the shortwave radiation budget
algorithm (SASRAB) developed by Pinker and Laszlo
(1992). The differences in atmospheric absorption when
compared to high resolution computations are about 2%
and 7% for the clear and cloudy cases respectively. The
monthly mean LW fluxes at the surface were taken from
the NCEP reanalysis data ( Kalnay er al. 1996). These
radiative fluxes are estimated using the radiative transfer
model of the NCEP numerical model.

The SW cloud radiative forcing (SWCRF) and LW
cloud radiative forcing (LWCRF) at the TOA are
calculated as SWCRF= S ( A, - A) and LWCRF= Fy-F.

Month

between the longitudes 80°E-90°E. Period : 1983-90. Contour

where the Ay, is the clear sky albedo and Fe, is the clear
sky long wave radiative flux at TOA. S is the incoming
solar radiation at the top of the atmosphere. Surface CRE
is also defined as the difference between surface radiative
fluxes under all-sky and clear sky conditions.

The TOA (T), surface (S) and atmospheric (A) CRF
are related as

CRF(A) = CRF (T) - CRF(S)

Positive CRF parameters indicate a warming of the
system and negative values indicate a cooling.

The SST data was taken from the monthly analysis
of the National Centre for Environmental Prediction
(NCEP). USA, which is derived from ship, buoy and
satellite measurements (Reynolds 1988). This data set

provides monthly mean SST on a 2% x 2"spatial grid. This
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Fig.3. Geographical maps of correlation coefficients between (a) local SST and FDC anomalies (top), (b)
SST anomalies and Nino-3 SST (middle) and (c) FDC anomalies and Nino-3 SST(bottom). Period:

June-September, 1983-90. Contour interval

: 0.2 . Negative (positive) CCs are indicated by dotted

(continous) lines. Negative (positive) CCs exceeding 0.35 are shaded light( dark)

data is available in the GEDEX CD-ROM. This data set
was then interpolated into 2.5 x 2.5% grids of ERBE and
ISCCP data.

FDC data are available from June 1983 to December
1990, whereas the ERBE and surface radiative budget
data are available from 1985 to 1988.

3. Results and discussion
3.1. Spatial and seasonal variations of FDC
The spatial pattern of annual frequency of deep

convection is shown in Fig.1 along with the FDC during
the monsoon period (June-September) and its standard
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deviation. Annual FDC is maximum (exceeding 12%)
close to equator over the east Indian ocean and adjoining
west pacific and Indonesian region. During  the summer
monsoon period of June-September, maximum FDC
(exceeding 20%) is observed over Bay of Bengal
Another smaller area of maximum is observed over the
west Pacific ocean. Over the Indian region, FDC
decreases rapidly towards the west. Maximum standard
deviation exceeding 5% is observed over Bay of Bengal
and the equatorial Indian ocean. The latitude-month
variation of FDC averaged between the longitudes 80°E
and 90°E is shown in Fig.2, which clearly shows the
northward progression of maximum FDC from the
equatorial region to Bay of Bengal from March to July.
Maximum FDC exceeding 20% 1s observed over north
Bay of Bengal from June 1o August. The zone of
maximum FDC shifts to the equatorial region once the
summer monsoon is withdrawn from the Indian region.

32, Sea surface temperature and deep convection

The local and remote correlations between SST and
deep convection during the monsoon period. June-

examined 10 relative
influence of local SST versus large scale circulation.
Local correlation coefficients calculated between monthly
mean SST anomalies and FDC anomalies, arc shown in
Fig.3a. Positive (negative) correlations  suggest  that
warmer SSTs increase (decrease) deep convective clouds.

September  were explore the

Significant positive correlations between SST and FDC
are observed over the central equatorial Pacific, east
[ndian ocean and over small regions in the Arabian Sea
and south Bay of Bengal. However over Indonesia and
adjoining east Indian ocean, variations in convection tend
to be out of phase with variations in SST. The weak
correlations exist between SST and FDC over most of
Arabian Sea and Bay of Bengal, indicating o weak
relationship between FDC and SST over these regions.

SST anomalies over the central and east Pacific
ocean associated with the ENSO evenls are responsible
for large scale circulation anomalies especially over
the tropics. To understand the response of the variations
in FDC over region to the SST
anomalies over the east Pacific ocean, remote correlations
hetween Nino-3 SST [the mean anomalous SSTs of the

Asian  monsoon
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Fig.5. Geographical maps of (a) SWCRF at TOA, (b) LWCRF
July, 1985-88. Contour interval: 20 Wm™

Nino-3 area ( 5°S- 5°N, 150°W - 90° W)] and FDC were
computed for the monsoon period, 1983-90 and are
shown in Fig. 3 (c). In the same diagram (Fig 3.b), also
shown are the remote correlations between monthly mean
SST anomalies and Nino-3 SST. Significant positive
correlations between monthly mean SSTs and Nino-3 SST
are found over equatorial central Pacific and most of the
Indian ocean. Over the Indonesian region and west
Pacific, negative correlations are found. The positive
correlations over the Indian ocean are consistent with the
findings of Meehl (1987) and Godfrey (1994). They
reported that SST in the Indian ocean warm up in a
composite El Nino event. The reasons for this warming
are not clear, Hirst and Godfrey (1993) suggested that the
open passage at the southern tip of the Indonesia makes
warm ocean currents cross the Indian ocean and these
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at TOA, (c)SWCRF at the surface and (d) Atmosphere LWCRF. Period:

warm the SSTs during an El Nino event. Another
suggestion was that of increased surface insolation due to
decrease in cloud cover. This aspect will be further
examined later in this study. However it is found that
increased convective activity over the central tropical
Pacific is associated with reduced convection over tropical
Indian ocean, despite the fact that this region is
associated with positive SST anomalies. Over the west
Pacific Ocean also, convection was reduced. However this
reduced convection was rather associated with negative
SST anomalies.

It is also useful to examine the relationship between
SST and FDC on larger spatial scales. Fig.4. depicts a
scatter plot of the area averaged ( 30° S - 30° N, 50° E -
100°E) SST versus corresponding area mean FDC. It can
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Fig.6. Scatter between FDC (%) and SWCRF at the surface (top) and LWCRF in the atmosphere ( bottom).

Period : July 1985-88

be seen that temporal variations in the mean FDC are
uncorrelated with changes in the mean SST. which
suggests that warmer SST may not necessarily increase
deep convection over the Indian ocean. In this connection,
the suggestion of Betts (1990) is relevant. He suggested
that a warmer climate resulting from increased CO, would
not necessarily lead to a greater convection. Hence the
pattern of inter-annual variation between FDC and SST
seems to behave differently in the Indian ocean basin as
compared to the Pacific ocean basin

3.3. Deep convection and cloud radiative forcing

The CRF at the top of the atmosphere (TOA)
represents the overall radiative effect of clouds on the
surface-atmosphere system. CRF also can be defined for
the surface and atmosphere separately, where the effects
of clouds are actually registered on the energetics of the
system. Among the atmospheric CRF parameters, long
wave cloud radiative forcing (LWCRF) is more important.

In the tropics, it warms the troposphere, enhancing large
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scale convection (Randall er al. 1989) and it cools the
troposphere outside the tropics, thus strengthening the
Hadley circulation. In the deep convective regions, the
atmospheric LWCRF may be comparable in magnitude to
the latent heat released during cloud formation ( Randall
et al. 1989). In contrast, the short-wave cloud radiative
forcing (SWCRF) on atmospheric circulation is generally
quite small because clouds do not significantly affect the
overall absorption of SW radiation in the atmosphere
( Harshvardhan er al. 1990).

The mean spatial distribution of SWCRF and
LWCRF at TOA for the period, July 1985-88 are shown
in Fig. 5. Also shown in the diagram are SWCRF at the
surface and LWCRF in the atmosphere. Maximum cloud
radiative forcing is observed over Bay of Bengal and
adjoining area. Over north Bay of Bengal, magnitude of

SWCRF at TOA exceeded —120 Wm™ whereas LWCRF
at TOA was only of the order of -80 Wm™, thus causing
large net negative cloud radiative forcing of the order of —
40 Wm™. Rajeevan and Srinivasan (2000) suggested that
this large negative net forcing in the Asian monsoon
region is unique in the tropics. At the surface, magnitude
of negative SWCRF exceeds 120 Wm™ over north Bay of
Bengal. LWCREF in the troposphere exceeds 60 Wm™ over
Bay of Bengal and adjoining land area. It decreases
towards south and becomes negative (cooling) in the S.H.,
causing a large north-south cloud induced heating
gradient. Comparison of these spatial patterns of the
cloud radiative forcing with the spatial pattern of FDC
(Fig.1) shows that regions of large CRF are associated
with large FDC. It is further seen that about 80% of the
LWCREF of the surface-atmospheric column is manifested
in the troposphere while 80-100% of the SWCRE is felt at
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the surface. Thus the radiative effects of clouds are very
similar to that of latent heat release in that they remove
heat (solar energy) from the surface and deposit it (as long
wave energy) in the troposphere (Ramanathan 1987).
Moreover the cloud induced long wave heating of the
troposphere can influence the monsoon circulation. The
heating induces upward motion in the column and the
compensatory subsidence in the surrounding regions. The
surface solar cooling effect and the atmospheric long-
wave warming effect of clouds will also tend to stabilize
the column just as the effect of latent heat release
(Ramanathan  1987). Thus in the monsoon deep
convective cloud systems, radiative effects of clouds may
play an important role in maintaining the vertical thermal
structure.

The relationship between the cloud radiative forcing
at the TOA and cloud radiative properties have been well
documented ( Kiehl 1994, Weare 1995 , Pai and Rajeevan
1998, Rajeevan and Srinivasan 2000). In this study, we
have examined the relationship of surface SWCRF and
atmospheric LWCRF with FDC and the results are shown
in Fig.6. There is a linear relationship between surface
SWCRF and FDC and about 70% of the variation on the
surface SWCRF is explained by the variations in FDC. On
the other hand, the atmospheric LWCRF increases almost
linearly up to FDC of about 15% and thereafter there is
little dependence on FDC is noted. About 79% of the
variation in atmospheric LWCRF is explained by the
variation in FDC. When FDC is more than 15%, surface
SWCRF linearly increases with FDC whereas the
atmospheric LWCRF is invariant with FDC. This non-
linear response of atmospheric LWCRF causes an
asymmetry between the surface SWCRF and atmospheric
LWCRF contributing to a overall cooling of the surface-
atmosphere system.

3.4. Inter-annual variation of the relationships

In this section, the inter-annual variation of the
relationships among FDC, SST and cloud radiative
forcing have been examined. For this purpose, July 1987
and July 1988, two anomalous months, have been
considered.  Fig.7. shows the spatial distribution of
differences in FDC, SST and surface SWCRF and
atmospheric LWCRF between 1988 July and 1987 July.
SST distribution (Fig. 7d) reveals that most of Indian
ocean was warmer in July 1987 associated with the
development of the ENSO event. Warm pool area over
west Pacific on the other hand was cooler in July 1987.
However, deep convection (Fig. 7b) was more active over
the Indian ocean in July 1988 compared to July 1987. The
differences in FDC exceeded even 15% over eastern parts
of Arabian sea and south Bay of Bengal. Thus in spite of

R o

warmer SSTs, deep convective activity over most of the
tropical Indian ocean was suppressed in June 1987.

Correspondingly, surface SWCRF (Fig. 7a) in July
1988 was more pronounced over the Indian ocean
especially along the west coast of India and south
Arabian Sea and Bay of Bengal. The differences in
SWCRF are of the order of 40-60 Wm™ over Arabian
sea and 20 Wm™ over the equatorial Indian ocean. Thus,
most of the Indian ocean received excess solar radiation at
the surface in July 1987 compared to July 1988. The
differences in the atmosphere LWCRF also reveal similar
spatial pattern. Over most of the Indian ocean and
particularly along the west coast of India , atmosphere
LWCRF was more in July 1988 which suggests the
eastward shift of the cloud induced LW heating of the
atmosphere in July 1987 compared to July 1988. Both the
east-west and the north - south gradients in atmosphere
LWCRF were stronger in July 1988 suggesting stronger
cast-west and monsoon circulations. The spatial
distribution of differences in the surface SWCRF and
atmospheric LWCRF are similar to that of FDC
suggesting that the differences in the cloud radiative
forcing is caused due to the corresponding changes in
FDC.

These aspects are even evident in the area averaged
differences. Fig. 8. shows the area averaged ( between
30° S-30°N, 50°E - 100°E) anomalies of SST and FDC,
SWCRF at TOA, LWCRF at TOA , surface SWCRF and
atmospheric LWCRF. Deep convective activity was
suppressed in July 1987 over the Indian ocean in spite of
warmer temperatures. More FDC in July 1988 caused
larger SWCRF and LWCRF at TOA and larger surface
SWCRF and atmospheric LWCRF. In July 1988, area
averaged surface SWCRF was more by 20 Wm™
compared to July 1987. Thus warmer SSTs in July 1987
over the tropical Indian ocean lead to less warming due to
long wave cloud radiative forcing and less cloud reflection
of solar radiation to the space.

In addition to the well known dependence on SST,
tropical deep convection is also known to depend on
factors such as the large scale circulation features( Lau er
al. 1997, Bony et al. 1997). The role of heat fluxes and
energy convergence in the troposphere in tropical deep
convective zones was addressed by Srinivasan and
Smith(1996) and Srinivasan (1997) based on the model
proposed by Neelin and Held (1987). These results
suggested that the necessary but not sufficient condition
for the existence of tropical convergence zone (TCZ) is a
positive energy convergence in the troposphere. The
Neelin and Held model suggests that TCZ may not exist at
the highest SST if the net energy convergence in the
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troposphere is negative. Based on this model. Srinivasan
(1997) explained the relatively smaller occurrence of deep
cloud clusters over the warm pool in the west Pacific.

A possibility is that the warmer SSTs in the Indian
ocean may actually result from an increase in the absorbed
solar radiation at the surface due to a reduction in deep
canvection related cloud cover. In this way atmospheric
circulation anomalies may force SST anomalies rather
than vice versa (Soden and Fu. 1995). Because the time
scale of the ocean mixed layer response to the surface
heating change i1s much faster than one month. the
contemporaneous correlation between solar forcing by
cloud variation and sea surface temperature changes will
be strong, provided changes in other surface heat fluxes
are negligible. During the period considered. the year
1987 was an El Nino year and 1988 was a La Nina Year.
It has been well documented that in 1987. Indian summer
monsoon circulation was weak and India experienced
severe drought conditions ( Krishnamurti et al. 1989 ). On
the other hand,in 1988, Indian summer monsoon was
stronger and India received excess rainfall ( Krishnamurti
et al. 1990). These circulation anomalies can influence
the variations in deep convective clouds and cause a
change in solar cloud forcing. We have seen that in July
1987, Indian ocean on average received 20 Wm™ more
solar radiation at the surface compared to July 1988 due 1o
reduced convection which might have helped to cause
warmer SSTs. The contemporaneous changes between
the surface solar forcing anomalies and SST anomalies
during the ENSO episode of 1987 as shown in Fig.9. also
reveal the same conclusion. However this aspect needs to
be examined with more years of data and case studies
before a more concrete conclusion can be drawn.

4. Conclusions

(a) The annual average FDC is maximum over the
equatorial east Indian ocean and adjoining west
Pacific and Indonesian region. During the
summer monsoon (June-September). maximum

FDC (exceeding 20%) is observed over Bay of

Bengal. The maximum FDC zone exhibits
north-south oscillation in association with the
advancement/ withdrawal of summer monsoon.

(b) FDC variation in the Indian ocean is weukly
correlated with the variation with SST,
suggesting that atmospheric circulation patterns
play an important role in modulating the FDC
variations. In spite of warmer SSTs associated
with the 1987 ENSO, deep convection was
suppressed over the Indian ocean. Even
averaged over a larger spatial scale, temporal
variations in the mean FDC are uncorrelated

with changes in the mean SST which suggests
that warmer SST may not necessarily increase
deep convection in the Indian ocean.

(¢) Maximum cloud radiative forcing over Bay of
Bengal during the summer monsoon season is
associated with maximum FDC observed over
this region. Variations in FDC explain about
70% and 79% of the variations in surface
SWCRF and atmosphere LWCREF respectively.
At larger FDC ( > 15%) atmosphere LWCRF
does not depend on FDC. thus causing large
asymmetry between surface SWCRF and
atmosphere  LWCRF leading to a overall
cooling of the surface-atmosphere system.

(d) Interannual variations in FDC however modu-
late significantly the interannual variations of
cloud radiative forcing in the Asian monsoon
region. In July 1987, an El Nino year, warmer
SSTs. over the tropical Indian ocean lead to less
warming due to long wave cloud radiative
forcing and less cloud reflection of solar
radiation to the space.

(¢) There is some observational evidence
suggesting that warmer SSTs in the Indian
ocean during the 1987 ENSO episode might
have resulted from an increase in the absorbed
solar radiation at the surface due to a reduction
in deep convection related cloud cover.

This study is carried out with available but limited
satellite data sets. More observational study is required for
better documentation of the interactions among the deep
convection, SST and radiation in the Asian monsoon
region. The Clouds and the Earth’s radiant energy system
(CERES) initiated by NASA ( Wielicki et al. 1996) will
provide more useful data sets for the next 15 years so that
the features discussed in this study can be verified further.
CERES data are now becoming available for research.
Also important is to examine whether General Circulation
Models can simulate these observed interactions among
deep convection, SST and radiation in the Indian ocean
which are different from other ocean basins.
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