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ABSTRACT. A systematic programme of monitonng surface ozone and its precursor gases CHa, CO and NO,
(NO + NO3) at some selected sites in the Indian region was started under ISRO's geosphere biosphere programme in
1991, Measurements have been made at Ahmedabad an urban polluted site, Gadanki a rural relatively clean site,
Gurusikhar 2 high aliitude site representative of the free troposphere and Trivandrum a coastal (relatively clean) site
influenced by marine air. The data has been used to study different features of troposphere chemistry in the topics.
Some of the results from this programime relevant 1o the climate change problem are presented in this paper.
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1. Introduction

Atmospheric chemistry plays the key role in
determining the earth’s climate. Several constituents of
the atmosphere are radiatively active, i.e., they absorb and
re-emit both solar (UV) and terrestrial (long wave)
radiation, determine the temperature structure of the
atmosphere, provide the energy for the large scale
atmospheric dynamics and regulate the radiation regime
as well as the environmental conditions in the biosphere
which control the sustenance and evolution of the life
forms on earth as we know them today. Many of the
gases, important in chemistry and radiation, are minor
constituents in the atmosphere, i.e., their abundances are
in parts per million by volume or less, some of them
exist as traces, with abundances in parts per billion (10”)
or even parts per trillion (10"%) by volume. Further, the
abundances of most of these gases are determined either
by emissions from the biosphere below (the earth’s
surface and the oceans), e.g.. CO,;, CHy, CFCs, or by
photochemistry involving the biospherically emitted gases
and solar radiation, e.g. O, O, NO,. The sources of these
gases include both natural as well as anthropogenic
processes, the later forming a substantial part. Due to the
ever increasing population, increased industrialization,
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changing life styles efc. the atmospheric composition is
changing, the abudances of some of these trace gases have
been increasing with time, e.g., CO,, CH;. In recent years
several new chemicals have been introduced in the
atmosphere, e.g., CFCs, HCFCs. There is growing
concern that as a result of these, the earth's climate is
changing, the most significant feature being increased
surface temperature - Global Warming, There is now
observational evidence that the global mean surface
temperature has been increasing over the past hundred
years or so at the rate of 0.02 1o 0.04° K per decade
(Fig. 1) and that this increase in temperature is correlated
with increasing abundances of greenhouse gases. such as
CO, and CH,.

The tropical regions are of special significance
in atmospheric chemistry and climate change studies
(Naza, 1997) because (i) the tropics contribute almost half
of the biogenic input of trace gases, (ii) abundant solar
radiation throughout the year and a higher level of solar
UV penetration into the tropical troposphere (due to
lower total ozone content) gives rise to a higher level
of photochemical activity, increased production of
trace gases of photochemical origin, in the tropics
when compared to middle and higher latitude regions,
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Fig. 3. Long-term trend in surface ozone at different locations (after Marenco et al. 1994)
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Fig. 4. Sources and sinks of tropospheric ozone

(iif) Higher tropopause level (16-18 km) over the tropics
when compared to mid-latitudes (12-14 km) and high
latitude regions (10-12 km) gives rise to a situation in
which most of the biogenic air in the middle and high
latitude regions originate in the tropics and (iv) higher
water vapour content and lower tropopause temperatures
gives rise to a special features of the chemistry in
the tropical troposphere. Another special feature of the
tropics is the frequent occurrence of convective storms
which transport large quantities of biospheric air across

the boundary layer into the free troposphere where the life
times of the trace gases are large and they can have a
longer term impact on atmospheric physicochemical
processes.

In the tropics the Asian region has features which
make it special significant for climate change studies. It
is a densely popu]aledhnhabned region, currently
experiencing a rapidly expanding economy with
concomitant growth in industrial and human activity such
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as intense land use change. All this makes this region
highly prone to human induced perturbation in
atmospheric composition relevant for climate change.

2. Greenhouse effect in the earth's atmosphere

Greenhouse effect is largely due to trapping of the
terrestrial long wave radiation by the atmosphere and
results in raising the mean surface temperature by about
33°K. The contribution of different atmospheric
constituents is as follows :

H,0O CO, N,O CH, 04 Others (CFCs,
CCl. NH. NO, O,
etc.
20.6°K 7.2°K 1.4°K 0.8°K 2.3°K 0.8°K

Water vapour is seen to be the largest contributor,
contributing about 60% to the total. This is also seen in
Fig. 2, which shows a spectrum of the terrestrial long
wave radiation as seen from space (Hanel er al.,, 1972).
Water vapour and carbon dioxide have a large number of
absorption bands in the 4 pm to 100 pm region and their
role in atmospheric radiation budget has been known for a
long time. The wavelength region 8 im to 12 um is free
from CO, and H,O absorption and is known as the
atmospheric window. Methane and nitrous oxide have
absorption features in the window region. Ozone has a
strong absorption band around 9.6 p. Hence even though
their relative concentrations are small, they become
important greenhouse gases.

Even though water vapour in the atmosphere is the
major contributor to greenhouse effect in the earth's
atmosphere, it is not affected by human activities and its
abundances have been relatively constant with time
(changes have taken place only in the early stages of
atmospheric evolution). The concentration of most of the
other radiatively active gases, except O, have been
increasing with time largely due to anthropogenic
activities and contribute to enhanced greenhouse effect -
Global Warming and Climate Change. CO, is the main
contributor, contributes about 55% in global warming
(IPCC, 1990). Next in importance is the flurocarbon
family of CFCs and HCFCs, 24% followed by methane
15% and nitrous oxide 6%.

Even though ozone is a major greenhouse gas next
only to carbon dioxide from the mean greenhouse effect
point of view, it does not figure in most climate change
estimates because of lack of adequate reliable information
on tropospheric ozone trends. In recent years there have

been several studies that show that tropospheric ozone as
well as ozone near the surface (in the biosphere) has been
on the increase in several regions of the globe. Wege et
al. (1989) analyzed a twenty-year record (1967 to 1987)
of balloon ozonesonde observations at Hohenpeisenberg
and found a roughly | ppbv per year, which amounts to 2
to 2.5% per year increase at all heights in the 2-8 km
region. Similarly Staehlein et al. (1994) observed a 1.5%
per year increase of all altitudes in the troposphere during
the period 1975 - 1985. Bojkov (1988) estimated that on
the average tropospheric ozone has been on the increase at
the rate of 1% to 2% per year over the past few decades
even though there are stations, which do not show any
increase or even show a negative trend. Surface ozone
has been on the increase at almost all sites where there has
been a systematic record of observation. Marenco et al.
(1994) suggest an increase of 1.6% to 2.4% per year over
the last forty wyears (Fig.3). Tropospheric ozone
exhibits large spatial and temporal variations, spatial
features include regional and local effects which need to
be delineated from the large scale features, which are of
interest to climate change. However, several recent studies
indicate that tropospheric ozone is indeed an important
contributor to global warming and climate change, may
even be the second most important candidate for climate
change studies.

3. Tropospheric ozone and its chemistry

Ramanathan and Dickinson (1979) were the first to
point out the importance of ozone in greenhouse effect
and global warming studies. On a per molecule basis the
importance of tropospheric ozone is 1600 times more than
that of CO,. Most of the ozone in the atmosphere is in the
stratosphere in the altitude region of 20 to 35 km.
Troposphere contains only 10 to 14% of the total ozone.
Nevertheless this is more important for climate change
problem since most of the greenhouse warming of the
earth’s atmosphere takes place in the altitude region of § to
16 km. Further, since the half-width of the rotational lines
is proportional to atmospheric pressure, IR absorption by
ozone is more dominant at these altitudes inspite of the
low ozone mixing ratios in the region.

Fig. 4 illustrates the sources and sinks of
tropospheric ozone. The sources are transport from the
stratosphere and in situ photochemical production. The
sink is mostly due to deposition to the ground and
subsequent destruction at the surface, even though there is
some chemical destruction. It was earlier believed that
most of the ozone in the troposphere is due to downward
transport from the stratosphere. However, in recent
decades it has become clear that there is significant in sit
production of ozone in the troposphere (Chameides and
Walker, 1973, Crutzen, 1984) and on a global average,
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in situ production is as important as transport from
stratosphere (Levy et al., 1985). In situ production
involves photooxidation of several pollutants, such as
CHy, CO and non-methane hydrocarbons (NMHCs)
released into the atmosphere from the surface (Fig. 4).
The oxidation involves the peroxy radical HO, and
requires a certain amount of background nitric oxide
levels. A typical reaction scheme for CO is as follows :

CO + OH — H+ CO,
H+0;+M - HO, + M
HO, + NO — NO, + OH
NO; + hv - NO+0O
0+0,+M - O;+ M
CO + 20, +hv - CO, + 04

The OH radical comes from photodissociation of O,

05 + hy - 0,+0'D
0'D + H,0 - 20H

The OH and the NOX radicals are recovered in the tact
after the reaction cycle.

Similar, but somewhat more involved reaction cycles
can be written for CHy; and several other organic
compounds (both industrial and vegetation emissions).

R + O;+M - RO, + M
RO, + NO — NO, + RO
NO; + hv - NO+0O
0+0,+M — O;+M
R+ 20, — R+ 0,

Where R can be any organic molecule like CHs,
C,Hs or more complex hydrocarbons. In the absence of
sufficient NO, instead of

RO, + NO - NO, + RO
we have
ROz + 03 —3 RO + 201

and reaction cycle ends up in destruction of Oj rather than
production.
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Fig. 5. Global distribution of radiative forcing of tropospheric ozone
(after Marenco ¢t al. 1995)

Hence the key to in situ production of tropospheric
ozone is in addition to solar radiation availability of
pollutants and sufficient NO-NO,. These are called ozone
precursors. Sources of these precursors for the production
of tropospheric ozone are mainly three (i) anthropogenic
origin, (if) lightning and (iif) supersonic aircrafts. In
addition to this downward transport from stratosphere to
troposphere should also be considered. However, most of
the sources for these precursor gases are believed to be of
anthropogenic origin. Hence, tropospheric production of
ozone exhibits large spatial variability. More production is
expected in the northern hemisphere than in southern
hemisphere. This is illustrated by Fig. 5 which shows the
global distribution of radiative forcing by tropospheric
ozone based on observations (Marenco et al., 1995:
Lelieveld and Dorland, 1995). It shows a distinct
asymmetry between northern and southern hemispheres
and a maximum in 40°-60°N region. A model study by
Lelieveld and Van Dortland shows that global
tropospheric ozone content has increased by a factor of
1.7 since pre-industrialization times (1850-1990) as a
result of anthropogenic CO +CH, emissions.

4. ISRO-GBP programme of monitoring of ozone
and its precursor gases in the Indian region

India has a long history of atmospheric ozone
studies. G.M.B. Dobson made some pioneering
measurements with his spectrophotometer at Kodaikanal
in 1945 as part of a global observation compaign.
Systematic observations of ozone in India were initiated
somewhat later under the leadership of K.R. Ramanathan
who set up a network of ozone spectrophotometer stations
in India. Both total ozone as well as Umkehr observations
are being made from a network of stations, which include
Kodaikanal, Pune, Mt. Abu, Ahmedabad, Varanasi, New




MAUSAM, 52, | (January 2001)

Delhi and Srinagar. Recently, this network has been
augmented by the installation of  Brewer
spectrophotometer, which can measure in addition 1o
ozone, NO; as well as ground reaching UV radiation in six
selected wavelengths. Some of these stations have now a
data base extending 30 years or more and this data has
been used to study several features relating to the
behaviour of ozone in the tropics as well as its short term
and long term variations. Balloon ozonesonde ascents for
measuring the ozone vertical distribution are being made
from three stations, viz. Trivandrum (8°N), Pune (18°N)
and New Delhi (28°N) since the early seventies. Surface
ozone is being monitored by the bubbler instrument at a
number of sites. However, there has been no measurement
of the ozone precursors, CH;, CO, NMHCs and NO, in
the Indian region, which is needed for assessing the
contribution of in situ production of ozone at the surface
and in the free troposphere.  Recognizing this, a
systematic programme of monitoring ozone and its
precursor gases in the Indian region was mounted in the
early nineties under ISRO's Geosphere Biosphere
Programme. The programme consists of systematic

(routine) monitoring of ozone and regular measurements
of its precursor gases CH;, CO and NO, at a number of
sites selected to represent different types of environments,

viz. Ahmedabad (urban polluted), Gadanki (relatively
clean rural), Mt. Abu (high altitude free troposphere) and
Trivandrum (coastal/marine environment). Even though
these measurements are made within the boundary layer
(with the exception of Mt. Abu), it is expected that the
measurements are representative of the free troposphere in
these regions in so far as the large scale features and long
term trends are concerned.

5. Measurement programme

Ozone is being continuously monitored (normally at
fifteen minute intervals and more frequently during
special observation periods/campaigns) using a standard
dual beam UV analyzer based on ozone absorption at the
mercury line 253.7 nm. Total NO, (NO + NO,) is also
being continuously monitored with a  standard
chemiluminescent analyzer based on measurement of the
luminescence produced by the reaction of NO with Os.
There is also provision for seperating the NO and NO;
components in the NO, data. CO and CH; are being
monitored by a programme of regular gas sampling and
subsequent gas chromatographic analysis of the samples
the following table gives the details of data collection and
availability from the programme.

Ahmedabad (O Nov. 1991 ull
Dec 1995

NO, Nov 1993 ll
Dec 1995

Jan 1993
onwards

Gadanki (0N Nov 1993-1996
with some breaks
NO, Nov 1993-1996
with some breaks
CHy, CO  1994-96

Mt. Abu/ (O] 1995 onwards

Gurushikar NO, 1995 onwards
CH,. CO 1995 onwards

Some sporadic measurements were also made during
1993-94.

Trivandrum (O} 1997 onwards
NOx. (to be initiated)
CH,, CO

Several ocean cruises
in the Arabian Sea and
Indian Ocean during
1996, 1997, 1998
and 1999 including
INDOEX

Remote marine
Observations

0O;, NO,
CH,, CO

In the following, we will present a few results from
the programme that are relevant to the climate change
problem.

6. Results

Diurnal variations of surface ozone are shown in
Fig. 6 for Ahmedabad, Gadanki, Mt. Abu and Indian
Ocean. Both Ahmedabad and Gadanki show day time
buildup of ozone during the morning hours and decreasing
mixing ratio in the evening and night hours. Ozone
production is basically due to photochemical oxidation of
CO, CHy and NMHCs in the presence of higher levels of
NO,. Even though both these stations show increase in the
concentration of ozone during forenoon hours and
decreases during the afternoon hours, the rate of decrease
is slower for Gadanki than for Ahmedabad. Since loss of
ozone is basically due to reaction with NO, low levels of
NO, (NO and NO») at Gadanki cause this slow decrease.

Mt. Abu shows a decrease during the day time in
surface ozone. This is attributed to two factors, (i) due to
very low levels of NO, (the detection limit of the
instrument is about 350 pptv), there may be some net loss
of vzone and (/i) some loss of ozone could be due to
surface loss along the mountain slopes when the wind is
upward during daytime. It is important to note that the
overall level of surface ozone at Mt. Abu is bout 40-45
ppbv. which is higher than sometimes the peak values at
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Ahmedabad and Gadanki. This is due to the elevation of
Mt. Abu. The laboratory is situated at around 1700 m
height.

Surface ozone variation in the Indian Ocean region
(Lal et al., 1988) is different from that seen at all the three
land sites. It shows a slight decrease in the mixing ratio in
the afternoon hours.  Boundary layer mixing and
photochemical loss of ozone are the two main
processes responsible for this decrease. The over-
all low level, about 20 ppbv of ozone, is representative of
cleaner marine environment. Ozone mixing ratios as low
as 5-10 ppbv have been observed in pristine marine
environment.

The diurnal variations of NO, and that of CO (Fig. 7)
are totally different from that of ozone. Both NO, and CO
show higher values in the morning around 8 am and in the
evening /night around 8-10 pm and lowest values in the
afternoon around 4 pm. The morning and nightime higher
concentrations may be due to anthropogenic emissions
and boundary layer processes. However, the noontime
low values are due to their consumption in producing
higher levels of ozone. Both CO and NOj are used in the
production of ozone. So, while ozone is maximum during
noon hours, these two ozone producing gases are lowest.

However, if we see the seasonal
ozone together with NO, and CO and other ozone

precursors  like CH; we find that higher levels of
precursor gases lead to higher levels of ozone and
vice versa (Fig. B). Precursor gases as well as

ozone are higher in winter season at Ahmedabad and
lower in the monsoon season. Average daytime (1000 -
1600 hr) ozone increases from low values (15-20 ppbv) in
monsoon period to as high as 60 ppbv in winter. CO and
NO, vary from 200 ppbv and 5 ppbv respectively in
monsoon period to about 800 ppbv and 15-20 ppbv
respectively  in winter. This clearly indicates the role of
precursors in changing the levels of ozone. The
precursors are lowest in the monsoon season due to
the wind pattern, which brings the cleaner marine air from
the Indian ocean and the Arabian Sea and washout of
pollutants (Lal er al., 1988). The wind patterns in the
winter is reversed and it is from the north-east direction,
which brings the continental polluted air.

7.  Long-term changes

Surface ozone has been measured at the same
location at Ahmedabad during 1954-55 and also from
1991 onwards (Naja and Lal, 1996). Measurements
during 1954-55 were made using an electrochemical
titration instrument acquired through the International
Ozone Commission. Surface ozone measurements were

variation of
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Fig. 6. Average diumal variation of surface ozone at different sites in
the Indian region

made five times a day for one year. Present
measurements are made very 15 minutes using an
automatic analyser based on absorption of UV radiation at
253.7 nm. Fig. 9 shows diurnal variations in ozone
during1954-55 and 1991-93. It shows clearly, larger
diurnal buildup of ozone during the day in 1991-93 period
than in 1954-55. While in 1954-55, the maximum
daytime ozone was about 25 ppbv, the present values go
as high as 55 ppbv for the same period. Even the monthly
average values also show this difference clearly. Both the
data sets show low values during monsoon period but the
annual maxima are in different seasons. During 1954-55,
the maximum ozone mixing ratios were observed in
spring, while the present measurements show maximum in
winter season (Fig. 10). This is an important feature.
Many locations worldwide show maxima in spring, winter
maxima is a typical feature of Ahmedabad. This is mainly
due to the location of Ahmedabad and the large scale wind
patterns in different seasons. The wind pattern has not
changed over this period, but the north-easterly wind is
bringing more polluted air to this site. The spring
maximum is caused by relatively higher levels
of pollutants together with higher levels of solar flux
giving rise to higher photochemical production of ozone.
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Fig. 7. Tyvpical diurnal varition of CO; and NO, at Ahmedabad
The present measurements show higher levels of this region. There are many locations in the world

precursors during winter than in spring offsetting the
effect of increase in solar flux during spring/summer
season. No data is available for the precursor gases during
1954-55 period. However their levels are likely to be
much lower than the present levels.

In the Ahmedabad region most of the contribution
to the precursor gases comes form vehicular pollution.
The number of vehicles in the city during 1954-55
was only a few hundreds. The two wheeler industry
picked up dramatically in sixties and presently their
numbers have exceeded one million. Automobiles and
the two wheelers are the major sources of NO, and CO.
The annual average ozone concentration at 1400 hr
increased from a value of 26 (+6) ppbv during 1954-55 to
a value of 41 (£12) ppbv during 1991-93 registering a
linear increase of 1.91 (x0.04)% per year. Even in the
night (at 2100 hr) and in the early morning (at 0600 hr)
during monsoon months, the average ozone concentration
has increased from a value of 8.9 (x4) ppbv in 1954-55 t0
a of 10.7 (+3.3) ppbv 1991-93
an increase of 0.49(+0.37)% per year. This
ascribed to the change in the background ozone

value in showing
be

n

cin

ievels

where such surface ozone increases have been observed.
At Mauna Loa (19°N) the annual growth rate of ozone
is found to be 0.37% per year (Oltmans and Levy,
1994). Arkona (54.7°N) also shows a significant linear
increase from 1956 79 by 2.4% per year, but
subsequently a linear decrease during 1980s (Low et al.
1990) has been reported. However, in cleaner sites in
Canada and at South Pole a declining trend in surface
ozone has been observed (Logan 1994, Tarasick et al.,
1995, Oltmans and Levy, 1994). Chakrabarty (1999)
observed similar increasing trend in the Umkehr layer |
representing troposphere at other stations in India also
[Delhi (28°N), Ahmedabad (24°N) and Trivandrum
(8°N)J.

Marenco er al. (1994) have studied ozone time scries
data at several elevated sites for the period (1974 - 93).
They conclude that surface ozone has been increasing in
the Western Europe over the period at a rate of 1.6% per
year, Many sites in the southern hemisphere |American
Samoa (14°S), South Africa (34°S), Cape Grim (41°S)]
also show increasing surfuce ozone in the last two

decades
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Fig. 9. Long-term changes in surface ozone at Ahmedabad
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8. Conclusions

Realizing the importance of tropospheric ozone in
the absorption of the earth's infrared radiation and its
increasing trend, estimates have been made for its
contribution to the change in the radiative forcing from
the pre-industrial times to the present. Marenco et al.
(1994) have found that the relative contribution of ozone
to the change in the radiative forcing is about 18% which
is next to CO; only. Contributions by CH;. N.O and CFCs
are lower than that of ozone. This 1s reflected in the 1994
revision of IPCC report.
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Fig. 12. Charactenstics of stratosphere - tropasphere transport of ozone

Based on the population growth and energy
consumption, the 3D IMAGES mode! of NCAR suggests
that future changes in tropospheric ozone should be
largest in the tropics, especially in Asia (Brasseur et al.
1998). This will enhance the contribution of tropospheric
ozone to climate change.

It is observed that the maximum effect of ozone on
radiative forcing is around the tropopause region as shown
in Fig. 11 (Lacis er al. 1990). In order to understand the
effect of ozone on climate. there is a need to study the
variability, sources, sinks erc. of ozone in this crucial
altitude region. This needs measurements of vertical
profiles of ozone. The extent of the downward transport of
ozone from the ozone rich stratosphere into the
troposphere is highly uncertain. As shown in Fig. 12, if
there is a transport of ozone from the stratosphere into the
troposphere. it will be possible to ditferentiate the
stratospheric source if vertical distribution of ozone and
water vapour are made simultaneously. Very high levels
of ozone upto 500 ppbv  have been observed in the
tropical troposphere from the aircraft measurements. The
authors link these high ozone levels to the transport from
the stratosphere. Almost zero level of ozone has been
observed on some occassions in the upper troposphere.
They suggest that these could be due to convective
activities. Thus in the tropical upper troposphere widely
varyving levels of ozone from near zero to as high as 500
ppbv has been observed. A swdy of the vertical
distribution will also provide insight on the transport from
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the stratosphere, effects of convection, biomass burning
etc. on ozone. While IMD is regularly making
measurements of vertical distribution of ozone at three
sites in India (Delhi, Pune and Trivandrum), there is a
need for more extensive measurement so, ozone
preferably ~ with  simultaneously — water  vapour
measurements of ozone and related gases in the
troposphere and lower stratosphere are ideal due to their
global coverage and long-term measurements.
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