MAUSAM, 52, | (January 2001), 213-220

551.524.34 : 551.533.21 (5)

Searching for a fingerprint of global warming in the Asian summer monsoon
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ABSTRACT. This study investigates possible trends in several largescale indices that describe the Asian
summer monsoon. Results from recent atmospheric general circulation experiments are used to provide clues as to how
the monsoon might be changing due to the effects of global warming. Interestingly, this study has found that the
largescale wind shear monsoon indices have been decreasing at a rate of 0.1-0.3% per year (based on NCEP/NCAR
reanalyses 1958-98) in quantitative agreement with recent results from doubled CO> simulations made using several
state—of—the—art climate models. Nevertheless, despite the weakening of the monsoon circulation, all-India rainfall
shows no clear (rend in etther the model results or in the observation reanalyses from 1958-98. Multiple regression is
used to separate out the “dynamical” contribution from the observed all-India rainfall index, and a clear increasing trend
then emerges in the “non—dynamical” residual. A simple dimensionless Multivariate Monsoon Index (MMI) is proposed
that could be of use in monitoring global warming changes in the monsoon.
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especially in the areas where water is a major constraint on

Accelerated surface warming due to increasing
greenhouse gas concentration could provoke significant
modifications in the atmospheric general circulation.
Changes in the radiative and atmospheric
circulation patterns may also impact the hydrological cycle
and have far-reaching consequences on human society,

forcing

(213)

economical development. Asian region is particularly
sensitive to perturbations in the climate system, and
therefore predicting the sensitivity of the Asian monsoon
to anthropogenic climate change is an important issue.

Despite its complexity especially on regional and
smaller scales (Pant and Rupa Kumar 1997), many of the
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Figs. 1.(a-c). Indices describing the large-scale Asian  summer
monsoon : (a) mean zonal wind shear index U = wgo-
ugsg ( m/s ) averaged over the domain 40°-1107 E/EQ-
20° N (Webster and Yang 1992), (b) mean mendional
wind shear V = vao — vgso ( m/s ) averaged over the
domain 70° = 110° E/10-30 248° N (Goswamt ¢ al
1999), (¢) summer rainfall averaged over grid points
covering India (solid line) and averged over 306 rain
gauges (dashed line). Note the decreasing trends in bath
Uand V butnot in P

largescale features of the monsoon circulation can now be
captured by current generation atmospheric General
Circulation Models ([Stephenson er al. (1998) and
references therein]. General Circulation Models (GCMs)
have also been used to investigate the climatic impact

of an increase in the atmospheric concentration of

greenhouse gases (IPCC 1995). The GCM simulated
monsoon response to increased amounts of CO; is
complex and strongly ‘model dependent. Nevertheless.
because of the unprecedented nature of global warming.
physically based climate models may be the only possible
tools that can give some prior information on the possible
changes that might occur in the monsoon.

Observational studies have found that there is little
evidence of any significant trend in average Asian

monsoon precipitation in the recent historical observations
(Thapliyal and Kulshrestha 1991; Srivastava et al. 1992,
Subbaramayya and Naidu 1992; Rupa Kumar et al. 1992).
However, this does not preclude the possibility that the
monsoon response to climate change may show up more
clearly in either other variables than rainfall, or in special
combinations of several variables. The GCM responses o
increased CO, may provide useful clues that can help in
the search for changes that may be taking place in the
observable monsoon. For example, structural changes in
monsoon correlations caused by movements in the
descending branch of the Walker circulation (Krishna
Kumar et al. 1999).

This artcle will briefly examine recent trends in
several largescale indices of the Asian monsoon. Changes
simulated in recent model experiments will be used to
interpret the observed trends. Multiple regression will be
used to separate out the dynamical from the non-
dynamical contributions to the all - India rainfall.

2. Large - scale monsoon indices

Fig. | shows three indices that are often employed in
studying the large-scale behaviour of the Asian summer
monsoon. For the sake of simplicity, this preliminary study
will focus attention on these simple large-scale indices.

Monsoon convection over Asia is associated with
strong vertical shears in both the zonal and the meridional
winds, Webster and Yang (1992) demonstrated that a
useful large — scale index is obtained by averaging the
June - September mean zonal wind shear ugsy — uyg Over
the region 40 — 110°E / EQ — 20°N. This U — index
measures the zonal circulation and is strongly related to
changes in the Walker circulation (Ju and Slingo, 1995).
Using the NCEP/NCAR reanalyses for the period 1958 —
98 we have calculated the U — index shown in Fig. 1(a).
Despite a large amount of interannual variability, a clear
decreasing trend can be noted in this index, most likely
associated with the observed weakening in the Walker
circulation (Trenberth and Hoar, 1996). Linear fits to the
logarithm of the U - index show that the estimated trend is

- 0.22% per year and explains R’ = 0.15 of the total
variance of the series.

Webster and Yang (1992) noted that there was
“almost zero correlation” between the U index and
variations in June — September rainfall averaged over
India. To remedy this shortcoming, Goswami ¢t al. (1999)
proposed that a more appropriate monsoon index should
be based on the meridional rather than the zonal
circulation. They proposed a V index obtained by
averaging the June - September mean meridional  wind
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TABLE 1

Correlations between various observed monsoon indices. Values above the Ieading diagonal give correlations between
the raw series, whereas values below the diagonal give correlations between high — pass filtered de-trended
series (year - to - year differences). Correlations above 0.403 are significantly different from zero
at 99% confidence using a 2-sided Student € - test with 38 degrees of freedom

Index

AIRR

U

v

(.38

0.57

shear vgsg — uagg over the region (70°-110°E / 10°S-30°N).
Fig.1(b) shows this index calculated from the

NCEP/NCAR reanalyses. The series is significantly
correlated with the U index and also shows a decreasing
trend. Linear fits to the logarithm of the V-index show that
the estimated trend is — 0.32% per year and explains R’ =
0.06 of the total variance of the series. The decreasing
trends in the U and V wind shear indices are also present
during both the earlier and later halves of this record

suggesting that they are robust features that are not due to
inhomogeneities in the reanalyses resulting from sudden
changes in data availability (e.¢. satellite irradiances).

Fig. 1(c) shows the average June~September rainfall
over India estimated in two different ways. The solid
curve gives the all — India Rainfall (AIRR) estimated by
averaging rainfall at Indian grid points in the
NCEP/NCAR reanalyses. The dashed curve gives the all —
India rainfall obtained by directly averaging the
measurements at 306 rain gauges over India (AIR).
Despite a difference in mean value, variations in the two
indices closely resemble one another which gives us
confidence in using the NCEP/NCAR reanalyses for
variability studies. A more detailed comparison of the two
rainfall indices is presented in Rupa Kumar and Ashrit
(1998). Unlike the dynamical U and V indices, there is no
apparent trend in either rainfall index over the period 1958
— 1998. This is in agreement with previous studies that
have also found no evidence for significant trends in the
AIR even when using longer historical periods (Rupa
Kumar er al. 1992).

Table 1 presents correlations between the various
indices. Despite substantial correlations between the
indices, most of the squared correlations do not exceed 0.5
suggesting that the time evolution of the indices can
differ significantly from one another. Correlations have
also been calculated between detrended series obtained

by applying backward differences to each time series.
Differencing is a simple and effective way of detrending
short climate series and helps emphasize shorter period
variations such as quasi — biennial signals (Stephenson
et al. 1999). The correlations between the detrended
time series are all larger than the correlations between
the unfiltered series. For example, by filtering out the
longer decadal trends the correlation between AIRR and
AIR increases from 0.76 to 0.90. From Fig. 1(c) it can be
scen that the AIRR derived from the NCEP/NCAR
reanalyses has more decadal variability than the
AIR derived directly from rain gauge observations.
The inhomogeneous inclusion of upper air temperature
and humidity data may partly account for some of these
differences (e.g. differences in the MONEX year 1979,
personal  communication, M.  Chelliah).  Another
noteworthy feature is that the reanalysis derived
AIRR index has a much weaker correlation with the U —
shear index (both raw and detrended) than does the AIR
index. This suggests that the NCEP/NCAR reanalyses may
be  slightly  underestimating  monsoon  rainfall
teleconnections with ENSO perhaps because of model
biases.

3. Model simulated monsoon response

As might naively be expected from enhanced
warming over the Eurasian continent, several modelling
studies have found that the simulated Asian summer
monsoon becomes more intense in a world having
increased amounts of CO, . In a comparison of doubled
CO; response in five atmospheric GCMs coupled to a slab
ocean model, Zhao and Kellogg (1988) concluded that
wetter summer conditions were likely to occur over both
India and south-east Asia. With another coupled
oceanatmosphere model, Meehl and Washington (1993)
also obtained greater summer monsoon precipitation
in a doubled CO; coupled model simulation, and also
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TABLE 2

Model estimates of various summer monsoon indices (June - September). U is the mean zonal wind shear uzo0 — Usse
(in nvs) averaged over the domain 407 — 110°E /EQ — 20°N (Webster and Yang 1992). V is the mean
meridional wind shear vao— vsso (in mv/s) averaged over the domain 70° — 110°E/10° — 30°N
(Goswami ez al. 1999), P is the summer rainfall averaged over land points in the
Asian domain 60° = 120°E/EQ — 30°N (Douville et al. 1999a.b)

Climate model | x CO- 2x CO»
L \ P L v P
CNRM 275 37 10.7 244 293 10.2
LMD 20.6 578 9.9 28.4 5.73 11.2
UKMO 26.1 471 7.6 243 4.01 8.1
Mean 273 4.73 94 25.7 4.22 9.8
TABLE 2

Multiple linear regression fits to the all — India rainfall index using combinations of time and U and V wind shear

indices as dependent variables. Coefficients in parentheses were obtained using all — India rainfall obtained
directly by averaging 306 rain gauges instead of using NCEP/NCAR gridded reanalyses

3

FIT B [ Bs R’
TOO 0.0000 (-0.0002) 0.000 (0.002)
ovo 0431 (0.397) 0.329 (0.397)
00U - 0.677 (0.769) 0.140 (0.255)
VO 0.0007 (0.0004) 0.456 (0.413) 0.349 (0.408)
ovU 0.386(0.31%) 0.225 (0.397) 0.341 (0.449)
TOU 0.0008 (0.0006) 0.796 (0.869) 0.165 (0.280)
TVU 0.0009 (0.0008) (0,395 (0.320) 0.353 (0.504) .376 (0.483)

explained this increase by the stronger surface warming
over the Asian continent than over the Indian Ocean.
Bhaskaran er al. (1995) analysed the results from a

transient coupled experiment with a gradual increase of

the CO- concentration, and found a northw ard shift and an
intensification of the monsoon rainfall. which was also
partly attributed to an increased difference between land
and sea temperatures. However. a later study showed a net
reduction in area averaged monsoon precipitation when
possible changes in sulphate aerosols were also prescribed
(Bhaskaran and Mitchell 1998). Other studies without the
inclusion of sulphate aerosols have also found decreases in

mean monsoon precipitation. In the study of Zhao and
Kellogg (1988). only three models indicated an increase in
soil moisture over Asia. while one produced a strong
decrease and the last one gave an unclear response. More
recently. no clear evidence has been found for a significant
change in monsoon rainfall either in the Max
Planck Institute coupled model (Lal er al. 1994, 1995)
or in various timeslice experiments performed with
the MétéoFrance atmospheric GCM  (Mahfouf er al.
1994, Timbal er al. 1995). Kitoh er al. (1997) noted
an apparent paradox between the circulation and
precipitation changes of the monsoon in a transient CO,
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coupled model experiment. Despite a weakening of
the low-level monsoon winds over the Arabian sea, there
was an increase in summer rainfall over India, which was
speculated to be due to increased humidity in the warmer
atmosphere.

Table 2 presents June — September means for indices
obtained from both control 1 x CO, simulations and
doubled CO, simulations made using three different
atmospheric general circulation models that participated in
the “Land — Surface Processes and Climate Response”
(LSPCR) project (Palcher er al. 1998). The models were
all run for 10 years for both the control simulations and for
the doubled CO, simulations. For the doubled - CO,
experiments, sea surface temperature and sea ice
anomalies were taken from the “GHG" transient

simulation performed with the HadCM2 coupled model of

the Hadley Centre (Mitchell er al. 1995, Johns et al.
1997). Average anomalies for each month of the year were
calculated over a 20-year period around the time at which
CO; levels were twice current values. These anomalies
were then added to the climatological monthly average
values over the period 1979 to 1988. For more details
about the model simulations refer to Douville er al.
(1999a,b).

All three models overestimate the strength of the U
and V indices, which is a common problem in many GCM
monsoon simulations (Stephenson er al. 1998). For all
three models, there is a consistent decrease in both the U
and V and dynamical indices with doubled CO, . The
fractional decrease in the mean U and V indices is about
10% over a CO, doubling time of 70 years, which corres
ponds to a net annual decrease of around - 0.15% per
year. This is close to the rate of decrease noted in the pre
vious section for the observed V — index over the period
1958-98. Some of this trend could be due to an ENSOlike
monsoon response (Ju and Slingo 1995) to increased
warming in sea surface temperatures in the equatorial
Pacific in the UKMO coupled scenario run. It should be
noted that in addition to the weakened zonal circulation,
the local meridional circulation over Asia also weakens as
seen in the weakened V index. This is contrary to the
increase that might be expected to occur from simple
arguments based on the increased temperature contrast
between the Eurasian land mass and the Indian ocean. It is
possible that increased humidity over the warmer tropical
oceans may be favouring convection over such regions
thereby weakening the off equatorial monsoon circulation
(Stephenson 1995).

Table 2 also contains values for the mean June—
September rainfall over land in the region 60°-120°E /EQ
—=30°N, which includes India and surrounding countries
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Figs. 2(a-c). Decomposition of the observed P index obtained by
performing multiple lincar regression : (a) contribution
1o P from U-shear (solid) with P index (dashed), (b)
contribution from both U and V-shears (solid) with P
index (dashed), and (c) the residual precipition not
explained by U and V which contains a linear trend
(dashed).

in South East Asia. Because of the coarse resolution and
systematic errors in models, a more trustworthy response
is obtained by using a region slightly larger than just India.
The rainfall index exhibits a less consistent response to
CO; doubling than do the previous dynamical indices: it
increases for UKMO and LMD whereas it decreases for
CNRM (Douville er al. 1999a,b). The ambiguity in the
rainfall response was also apparent in previous model
studies, and there are several possible reasons for why the
regional rainfall response may be harder to predict.
Rainfall is the discontinuous result of complex physical
processes that are often difficult to simulate using
physically based models. Regional monsoon precipitation
is often the delicate balance between both adiabatic and
diabatic processes and is often prone to large sampling
errors due to the presence of extreme events (Stephenson
et al. 1999). Furthermore, local effects such as land
surface properties also play an important role in
determining the quantitative regional rainfall response
(Polcher er al. 1998; Cox et al. 1999; Douville er al.
1999a,b).
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4. Observed changes in all — India rainfall since
1958

Previous observational studies of monsoon climate
change have tended to focus on trends in rainfall without
considering in detail possible effects caused by changes in
the atmospheric circulation (Thapliyal and Kulshrestha
1991; Srivastava er al. 1992; Subbaramayya and Naidu
1992; Rupa Kumar et al. 1992). The availability of longer
analyses such as the NCEP/NCAR reanalyses now makes
it possible to account for dynamical changes taking place
throughout the depth of the troposphere. To better
understand the changes in all — India rainfall. we have
performed multiple regression using all — India rainfall as
the dependent variable. Using a simple linear regression
model, it is possible in principle to separate out the effects
of dynamical processes related to changes in the large -
scale wind shear from other effects such as changes in
humidity erc. The regression model that we have used is
given by :

= fo+ Bixi + Boxa + P + € (1)

where y = log,yP is the dependent variable, and x; = 7
(time in years), x> = logy,oV , and x3 = log,,U are possible
controlling factors. The beta parameters can be estimated
most easily by minimising the sum of the squares of the
residual (least squares). The parameter f3; is identically
zero because we center all variables (remove their means)
before performing the regression. By using the logarithm
of the indices, a “multiplicative™ model is obtained. which
is perhaps more appropriate for monsoon precipitation
than is an “additive” model. For example. the total
precipitation is the result of the convergence of moisture
fluxes into the region, in other words, the product and not
the sum of dynamical (e.g. wind) and non — dynamical
(e.g. humidity) effects.

Table 3 gives the least square estimates of the beta
parameters obtained for fits made with different
combinations of factors. The right hand column gives the
fraction R* of total variance explained by each fit. The
best fits are obtained when the V index is included (e.g.
OVU, TVO, OVU and TVU) confirming the claims made
in Goswami er al. (1999). The best fit is obtained when all
three factors (TVU) are included and can explain almost
half the total variance of the gauge based AIR index. The
inclusion of time in the fits does not substantially improve
the fits, which confirms that linear trends explain only a
small fraction of the total variance.

The various contributions 1o the gauge based AIR
index obtained for the TVU fit are shown in Fig. 2. The

contribution from the zonal wind shear B;x; explains only
25% of the total variance (Fig. 2a). By also including the
contribution from the meridional wind shear fx;, it
becomes possible to explain 45% of the total variance Fig.
2(b). This “dynamical component” of the all — India
rainfall contributes substantially in certain years such as
1970, 1972, 1979, and 1980. By subtracting out the
dynamical component, one can obtain a ‘“‘non -
dynamical™ part that is more likely to be influenced by
humidity and other diabatic effects. This is shown in Fig.
2¢ and can be seen to have a clear increasing trend and
also more short — term interannual variability especially
after the mid 1970s. A linear fit to the non — dynamical
residual gives an estimated increase of 0.17% per year that
explains R* = 0.07 of the variance of the residuals. This
trend in the multivariate residual logP — flogpV -
Bslog pU is the most significant of all the trends found in
the various monsoon indices and is significant at 90%
using a simple F — test. In addition, there is more variance
in the later half of the record (e.g. 1974, 1983, 1997) due
to the dynamical wind shear indices explaining less of the
total precipitation variation as explained in Krishna Kumar
er al. (1999).

Since f3:and fBsare both close to 0.5 for the TVU fits,
the non—dynamical residual can be approximated by the
logarithm of the dimensionless Multivariate Monsoon
Index :

MMI — (2)

uv

The MMI contains a marked increasing trend of
0.47% per year from 1958-98 significant at 95%
confidence using an F — test (not shown). In addition, the
MMI can be calculated for the model indices presented in
Table 2 and also shows a consistent increase of between
14 — 20% for all three models. The MMI may therefore
provide a sensitive multivariate fingerprint quantity for use
in monitoring possible climate change in the large — scale
Asian monsoon.

Concluding remarks

In this preliminary study of the largescale indices of
the Asian summer monsoon, we have shown that :

(i) The observed all —= India rainfall index contained
no significant trend since 1958, and that there is
also little consensus between various GCM studies
concerning the possible trend in South East Asian
rainfall.
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(it) The dynamical zonal and meridional wind shear
indices based on NCEP/NCAR reanalyses both
contain slow decreasing trends of 0.1-0.3% per
year over the period 1958 — 1998 in agreement
with expectations from recent time — slice
simulations made with atmospheric  general
circulation models,

(7if) The combined zonal and meridional wind shear
indices can account for almost 50% of the total
variance in the all - India rainfall by using multiple
linear regression.

(iv) The non - dynamical component of the pre-
cipitation exhibits a clear increasing trend from
1958 ~ 98 possibly caused by increases in
atmospheric humidity.

(v) The dimensionless Multivariate Monsoon Index
P/(UV)"? provides a simple approximation to the
nondynamical component of the precipitation and
could be useful for monitoring climate change in
the monsoon.

Because of the complexity of the Asian monsoon, it
is likely that the response of monsoon rainfall to
increasing CO, will be difficult to interpret. Krishna
Kumar er al. (1999) have speculated that the all — India
monsoon rainfall has not increased significantly in recent
years due to a compensation between weakening caused
by warming in the eastern equatorial Pacific and
strengthening caused by increased land temperatures over
Eurasia. However, warming over Furasia would be
expected to lead to a strengthened meridional monsoon
circulation which is converse to what can be seen in the
observations and model results. Furthermore, most of the
recent Eurasian warming can be accounted for by a
strengthening in the mid — latitude westerly flow (the
North Atlantic Oscillation) which is not known to be
strongly correlated with all - India rainfall. It therefore
seems likely that increasing atmospheric humidity or some
other as yet unidentified factor may be compensating for
the weakening allindia rainfall caused by increasing
temperatures in the eastern equatorial Pacific.
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