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ABSTRACT. An attempt has been made to parameterize the wave momentum flux wave energy flux and
pressure drag associated with mountain wave across the Mumbai-Pune section of western ghat mountain in India.

A two dimensional frictionless, adiabatic, hydrostatic, Boussinesq flow with constant basic flow (U/) and constant
Brunt Vaisala frequency (N) across a meso scale mountain with infinite extension in the Cross wind direction, has been
considered here

It has been shown that for a vertically propagating (or decaying) waves the wave momentum flux is downward (or
upward) and the wave energy flux is upward (or downward). It has also been shown that both the fluxes are independent
of the half width of the bell shaped part of the western ghat. The analytically derived formula have been used to compute
the pressure drag and to find out the vertical profile of wave momentum flux and wave energy flux for different cases of
mountain wave across western ghat, as reported by earlier workers.

Key words — Mountain drag, Mountain wave, Wave momentum flux, Wave energy flux.

numerical weather prediction model and it is required to
be parameterized. To achieve this the dependence of the
drag on grid scale parameters must be known. Usually
this pressure drag is splitted into three main components,
form drag, wave drag and hydrostatic drag. Form drag
again can be splitted into viscous form drag due to the
viscosity of the air and turbulent form drag due to the
additional production of turbulence mainly in the lee of
the obstacle (Emeis, 1990). Wave drag includes the
effects of gravity waves, inertial waves and Rossby
waves. For meso scale mountain, inertial waves and
Rossby waves do not occur. In response to the net

1. Introduction

When air flows over a mountain ridge, a stationary
wave disturbance is set up in the air current. These
waves, when analysed with respect to their wave length or
period, fall into three categories: short waves of period
much smaller than the half pendulum day are gravity
waves; and longer waves with larger periods are quasi -
geostrophic, planetary waves of the Rossby type. Meso
scale mountain can excite only gravity waves
(Emeis,1990). These gravity waves propagate upwards,
transferring energy and momentum possibly to great

heights. Because of the mountain waves the pressure is
systematically higher on the upwind slopes than on the
down wind slopes and thus exerting a net force on the
ground. This force is known as pressure drag or mountain
drag. It is one of the sinks in the atmospheric momentum
budget. This drag is a sub grid scale phenomenon in a

(325)

pressure drop between the wind ward and leeward side of
the mountain, the lee waves transport momentum from a
stably stratified air stream to the earth’s surface. Sawyer
(1959) first pointed out the relative importance of this
momentum loss, due to wave drag by meso-scale
stationery lee waves in comparison with surface frictional
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drag over rough terrain. He examined a case of two
dimensional flow over a bell - shaped obstacle and

determined that typical surface stress is of the order 1 - |
dyne/cm’®. It was further confirmed by Blumen (1965
Bretherton (1969) provided additional confirmation by
computing the stress due to two-dimensional flow over the
Welsh mountains using observed atmospheric conditions
the impot of the wave

drag, at least over the Front Range of the

A conclusive verification of tance

Rockies, was obtained from data collected by instrumental
air craft and reported by Lilly (1972). Smith (1978)
determined the pressure drag on the Blue Ridge Mountain
in the central Appalachians. During the first two

January 1974 several periods with significant

had

weeks of

observed by him with pressure differences typicall
SON/m’ across the ridge. It can be shown that the wave
drag is equal to the vertical flux of horizontal momentum
by the wave. Eliassen and Palm (1961) had shown that

vertical flux of horizontal change
with height, except possibly w (L

becomes zero. They had also shown that in a layer where

momentum does not

at levels where basic fl

U is everywhere positive the vertical fluxes of wave
energy and that of momentum are of opposite sign Smith
and Yuh-Lang (1982) have confirmed the above
theoretical findings of Eliassen & Palm. He has also
shown that in the presence of thermal forcing, the

mountain drag is reversed and the momentum flux i1s

strongly convergent at the heating level

In India mountain wave problem was studied by Das
(1964), Sarker (1965, 66, 67). De (1971). Sa et al

(1978), Sinha Ray (1988), Tyagi & Madan (1989). Kumar
et al. (1995) erc. Over different mountains in India. But
most of the above studies were concerned with properties
In India
problems of fluxes

of mountain this 1s the first

the

wave. study

addressing of momentum &
"

energy generated by mountain waves over India

In this paper attempt has been made to compute the
value of pressure drag and to get the vertical profiles of
wave momentum flux & wave energy flux associated with
Mumbai-Pune section of

mountain the

western ghat.

wave across

2. Data

For the present study we have selected those dates on
which mountain wave was reported by Sarker (1965) and
the Radiosonde data for those dates of Mumbai have been
used.
3. Methodology

Iet us consider an adiabatic hyvdrostatic frictionless,

steady Boussinesq flow across a two-dimensional n rth

-4 -
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south oriented ridge. It 1s assumed that the actual flow

consists of a basic flow and a perturbation super imposed

on the basic flow. It is also assumed that the basic flow is
normal to ridge and is constant with height.

! This
constant value is taken as the mean of the basic flow at all

levels upto the height where westerly component exists
that the Brunt-Vaisala

frequency is constant with height. Here horizontal length

also  assumed

Similarly 1t 1s

scale is small enough so that effect of earth rotation may

also be neglected. Under the above assumptions the
linearized governing equations may be written as
'] l fl/'}
U—= - (1)
AN ( ox
' ‘
own | odp 0
U—= ‘j -0 LB (2)
(B AN )i dz Pa
du  dw
— 4 —=() (3)
dx d:
a0’ O
U—+n — =0 (4)
da d:
Where U is basic state wind speed and py is basic

state density, a function of z only.

0 is basic state potential temperature.
/ p
., w are zonal & vertical component ol
rerturbation wind velocity.
! )
p’,p’ and 0"are perturbation density, pressure &

potential temperature respectively. Here we have taken

ain at 250 mtrs below the mean sea level.

Now if ‘l‘(\!\'..'_] be the Fourier transform of any

function f{\ 2 ) then we know that they are related by :

) expl—iky)dx (3)

flx.z)= Jj‘(_k.:) explikx)dk

(0)

Now performing Fourier transform on (1), (2), (3), &
(4) we obtain the following equations:

ikUpgie=-ik p (7)
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ikUpoﬁ'=—%—gf) (8)

oA OW

kit + il 0 (9)
. 4}

ikUB+ﬁ'd—°:0 (10)

<

Again using Poisson’s equation for the basic flow &
for the total flow we obtain:
’ ’ Of -
Bl (11)
Po YR B

[where F, = F, (;’) is the basic state pressure]

Since the fluctuation in density is more due to
fluctuation in temperature than due to fluctuation in
pressure, hence we have

=—— (13)

Then it is readily seen that w satisfies the vertical
structure equation

" w=0 (14)
Now by the substitution,

- {Po (0) -
w=_|——w (15)
Po (3) l

equation (14) reduces to

J "1 4+ fl_k2+.l_ﬁ(d_p] _L._d_e,o ﬁ.‘l =0
dpgldz ) 2pg d*

(16)
Now the last two terms in side bracket of equation

(16) are very small compared to other terms, so they may
be neglected. So equation (16) reduces to

% A

W

L+ {12 =k ), =0 (17)

<

where, / =g. is the Scorer’s parameter & N is the

Brunt-Vaisala frequency.

Here in present case we take N to be independent of
height and we shall take the vertically averaged value N

throughout the atmosphere.

Now for a vertically propagating hydrostatic wave,
we have, k<</ . Hence the solution of (17) can be taken as

Wy (k..:)= Acxp(ﬂz)+Bexp(—i!:) (18)
Where, A, B are constants.

Again at the ground the flow is assumed to follow
the terrain, thus

wix,z=0)=0% (19)
ox

Where g(.\') represents the terrain height. Now the

E-W profile of western ghat in the X-Z plane along
Mumbai-Pune section is given by as Sarkar (1965).

X '
——+a'tan” = (20)
a - +x- a

Where a=18.0 km, b =0.52 km,

2x.35
a’ = km, where =
bid

o
"“‘lm

Now,
W, (k,0)=w(k,0)= um( ab-i % }ex p(~ak) (21)
Thus from (18) & (21) we obtain

!

A+B= Ur'k(ab - i%}axp(— ak) (22)

Again to allow the energy to propagate upward, we
must have B = 0

Therefore,

A= Uik(ab — r'i;-}exp(— ak) (23)
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Thus,

{

wilk,z)= .\C.\pl'!'.":'l—( lik| ab—i exp |- ak +il: 24

A

Now the pressure drag per unit length along the ri

is given by:

- 2, 0g -
l-:|!u dx = | 7 — dx (25
ox

Again from Bernoulli’s theorem we know that for a
flow at any level the sum of kinetic energy & pressure

energy is constant. Hence at any level we have

" 'f|
— +— = constant 2
=
- Po
(since p, 1s homog s horizontall

n 1l

Bernoulli's theorem for the me:

U* P -

+— = ¢onstant, (=
=
. P
’ ’

Againu=U+u , p = P+p

Hence (26) reduced to

U+u)y P+p ,
— - = Constant (28

Subtracting (27) from (28) and after applying
perturbation hypothesis we abtain
¢ l'll, 9
Ui’ +—=0, ie., p =-pyln (29)
l-)w
Again,
' \ , 0C 5
\._‘[.\A::|;|—( -2 (30)
ox
Thus applying (29) & (30) in (25) we obtain,
F=— [pou'w(x,2=0)di (3

Again the momentum flux generated by mountain

wave at any level in the atmosphere is given by the

momentum flux integral [ p g dx

drag generated by

atmosphere bounded by the bottom & top of the mountain.

m (31) it is clear that pressure drag is equal

“the wave momentum flux i.e. the wave

mountain wave in the layer of the

From the above equation (31) it is seen that here

horizontal momentum budget at any level contains only
two terms; a momentum sink at the lower boundary and a

The momentum source is
maotion

momentum source at that level

downward flux of momentum due to wave
by the presence of the mountain in the stratified

forced t
This wave momentum flux is convergent in the

consideration and the

ayel

Now momentum flux = [pqu'w’dy (32)
Now, " w ’Li.\ =27 ,t.- dk
Where, w# is the complex conjugate w. Since,

e we consider only non-negative wave number, hence

c—dk [from(9)]

/

7

Now, w, (k,z)= Uk ak +ilz)

+iab

expl

+iab |exp(—ak +ilz)
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Now, using (34) in (33) we get,

T Q){O) i 2 T a‘?- 212
| Wwdx=2n —!-——}U || —+ab'k |exp(2ak dk
~ mld) M) ol

Since the left hand side of the above is purely a real
quantity, hence

o0 j% exp(-2ak) dk

Tu' W dr=—21tNU-—[—) 9 (35)
- Pz +| a b kexp(—2ak) dk
0

oo

Now, [kexp(—2ak)dk = — (36)
0 a”
To evaluate TMdk , let us first consider
0 C
d| tan™ £+ i'l a’+x’
oo L a 2 a’
| exp(—ak) exp(ikx)dk =
0 dx
d':mn' '—r+iln(a- t.r' ”
a 2 a”
So, Fourier transform of
dx

= exp(- ak)

Thus, Fourier transform of

ox i [a*+x*) exp(-ak
tan™' = +—In| —— |= p(_ )
a 2 a- ik

Hence,
rexp(—ak Jexplikx) . ax i, (a+x?
f P( ) P( )=rlun'—+—ln _—
% k a 2 a
for all x. (37)

putting x = 0 in (35),

we obtain jmk—)dk =0 (38)

0

= -5
So, J.texp( 2ak)
0

dk =0 (39)

Using (36) & (39) in (35) we obtain

[ u'wde=- nNin’b

—ca &

(40)

So, the momentum flux at any level in the vertical is
given by

T po(z) u'w'dx = - M

—t0 ~

(41)

Thus (41) shows that for a vertically propagating (or
decaying) mountain wave across western ghat along
Mumbai-Pune section, the flux of wave momentum at any
level is vertically downward (or upward) and it is
independent of the half width of the bell shaped portion.
It is also clear from (39) that the plateau portion
Nal

a’'tan” —

]of the mountain does not contribute towards
a
the generation of wave momentum flux.

Again the pressure drag or mountain drag across

western ghat = - J.,Ou (U)M 'W’(x, zZ= 0)

- np() (“‘ )NUb: (42)
S 2

where p(,(s) is the average of the densities at
1000hPa, 950hPa & 900hPa.

Equation (41) shows that vertical wave momentum
flux associated with mountain wave across Pune-Mumbai
section of western ghat is independent of height, which is
in conformity with earlier findings of Eliassen & Palm
(1961) and Smith & Lin (1982). Vertical profile of wave
momentum flux for a typical case has been shown in
Fig. 1.

Now the vertical flux of wave energy is given by

E= [p'widx (43)

-0

[Eliassen & Palm (1961)]

=2nf pw*dk (44)
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Vertical profile of mountain wave
momentum flux

4000

-20
Wave momentum
flux(x10000N/mtr)

Fig. 1. Vertical profile of mountain wave mon

Again from (7) we have p=-Upy(z)

Hence vertical flux of wave energy

==2nUp, (z) [ awxdk=-U [ py (z)u w

Thus from (45) it is clear that the flux
energy is vertically upward (or downward) for a
propagating (or decaying) mountain
vertical flux of wave energy and wave
oppositely directed. This is in con
findings of Ehassen & Palm(1961) ]
also shows that wave energy flux is independent of |
which is in conformity with earlier findings of El
Palm (1961).

April 2001)

T'he vertical profile of wave energy flux for a typical
D

case has been shown in F
Results and discussion

Results of this study consist of computation of
mountain drag, vertical flux of wave momentum, and

vertical flux of wave energy.

Expression for mountain drag at surface, given by
equation (31), shows that the mountain drag at surface is
equal to the downward flux of wave momentum in the

layer between the top and bottom of the mountain

Wave momentum flux at any level is given by (41).
profile of wave momentum flux is shown for a

typical case under study in Fig. 1. This shows that wave

Vertical

momentum flux at any level is downward. This result can
be used to interpret turbulence generated by gravity
waves. Since the wave momentum flux is downward at
any level, hence the momentum is being extracted from
that level and passed to the ground via pressure force.
Consequently at a certain time the basic wind speed may
be equal to the horizontal phase speed of the wave, so that
the intrinsic frequency of the wave becomes zero at that

level

one important result is that, the plateau
part of the Pune - Mumbai section of western ghat
does not contribute towards the generation of momentum
flux. This can be explained physically also. It is clear
that wave drag is due to the net pressure difference
between the wind ward and leeward side of the mountain.
All the air masses coming to the windward side of the
mountain can not come to the leeward side flowing
over the mountain. Thus a high pressure forms on
windward side and low pressure on leeward side.
But the plateau portion behaves like a plane land and
there is no such formation of alternate high pressure and
ow pressure area. Hence perturbation  pressure
distribution will be uniform over the plateau, as a result of
which plateau cannot contribute to the wave momentum
flux

Wave energy flux at any level is given by the
expression (45). Vertical profile of wave energy flux is
or a typical case under study in Fig. 2. From this

> it is seen that wave energy flux is directed vertically

at any level. It should be so also, because, the

of disturbance ie., the wave energy is the

1, which is at surface.

While discussing vertical flux of wave momentum it
pointed out that, due to continuous extraction of

n flow by the vertically propagating
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internal gravity wave, excited by a mountain, at some
level intrinsic frequency of the wave becomes zero. In
such situation the wave breaks down and all the wave
energy is transferred to the mean flow, which makes the
mean flow turbulent.

Computation of mountain drag for different cases is
given below in tabular form.

Time Mean  Mean Brunt  Mountain drag

8. Date (UTC)  basic Vaisala or Pressure

No flow  frequency drag
(m/s) (/s) (N/m)

1. 4Jan’59 1200 12.3 0.60 3381501

2. 21 May’'59 1200 13.7 0.61 3849731

3. 6Dec’6D 1200 12.3 0.61 3466013

4. 14 Dec 60 0000 6.7 0.61 1892394

5. 26 Dec'60 0000 9.6 0.61 2686633

6. 6Mar’65 0000 128 0.61 3689302

5. Conclusions

From the above study following conclusions can be
made:

(i) The mountain drag or pressure drag across
Mumbai - Pune section of western ghat is
independent of the half width of bell shaped
portion of the mountain.

(ii) Wave momentum flux is vertically downward
(or upward) for a vertically propagating (or
decaying) mountain wave and is independent of
the half width of the bell shaped portion of
western ghat mountain.

(iii) Wave energy flux is vertically upward (or
downward) for a vertically propagating (or
decaying) mountain wave and is independent of
the half width of the bell shaped portion of
western ghat mountain.

(iv) The plateau part of the Mumbai-Pune section of
western ghat mountain does not contribute
towards the generation of mountain drag, wave
momentum flux & wave energy flux.

(v) Inthe cases under study the values of mountain
drag, in general lies between 20,00000N/m and
40,00000 N/ m.

Vertical profile of mountain wave
energy flux
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Fig. 2. Vertical profile of mountain wave energy flux
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