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ABSTRACT. Performance of dynamic crop growth simulation model (CERES - Wheat v3.5) has been evaluated
for various wheat genotypes in wheat growing regions of India. The genetic coefficients were developed and sensitivity
analysis was carried out for the genotypes under study. The simulated phenology and yield were found in agreement with
observed ones suggesting that calibrated model may be operationally used with routinely observed soil, crop and

weather parameters.
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1.  Introduction

Wheat is one of the most important staple food crops
of India grown in diverse agroclimatic conditions from
11°N-35°N and 72°E-92°E. The rate of annual growth
of wheat production and yield showed a peak during early
years of green revolution but since then there has been a
decline in its growth rate. Wheat productivity may be
enhanced by minimising ‘Research gap’ (Potential yield-
Experimental yield) and  Management gap (Actual
experimental yield-Farmer field yield) through improving
efficiency of present agricultural system and stabilising the
productivity level with appropriate management practices.
Newly framed Agricultural Policy by the Govt. of India
has projected 4% growth rate in agricultural sector by
introducing ‘rainbow revolution’ in next two decades and
due focus on accurate weather forecast and  agro-
technology has been spelled in the policy. Improved
production technology at the farm leve! is the most crucial
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starting point for the fulsome future growth of wheat
which can be achieved by adopting suitable crop growth
simulation models.

These models possess maneuverable capabilities to
simulate a living plant through mathematical and
conceptual relationships that govern its growth in the soil-
plant-atmosphere continum. They are widely used as
management tools for understanding growth behaviour and
analysing the effect of current management decisions
against various probable future events to aid in
determination of best course of action. They are also
capable for evaluating long term management strategies
(Hoogenboom, 1991), environmental characterisation and
agro-ecological zoning (Aggarwal, 1992), defining
research priority and technology transfer (Jones and
O’ Toole, 1987), estimating  production potential
(Aggarwal, 1988), strategic and tactical decision making
(Rathore et al., 1994) and for predicting effects of climate
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Fig. 1. Station network of Wheat growing regions

change and variability (Lal er al., 1997). The simulation
of growth and yield is based on the quantification of
phasic  development,  photosynthesis, respiration,
morphogenesis, growth, bio-mass accumulation and
partitioning, extention growth of leaves, stem, roots and
grain, soil water extraction, evapotranspiration and plant
nitrogen status.

Dynamic crop growth models require information, in
general, on soil, weather, cultivar and management
practices. The cultivar is characterised in term of genetic
coefficients which explain the response of a cultivar to its
environment. The model technology can be transferred to
any environments for a particular cultivar once its genetic
coefficients are developed or the model is validated. The
major limitation of adoption of simulation wheat models
for Indian farmers is lack of genetic coefficients of popular
Indian wheat genotypes. The focus of present study s,
therefore, to develop genetic coefficients of different
wheat cultivars and evaluate their performance in diverse
environments of wheat growing regions of India using
CERES-Wheat Model V3.5 so that model may be
operationally used with routinely observed soil, crop and
weather parameters.

2. Data and methodology

CERES-Wheat (Crop Estimation through Environ-
ment and Resource Synthesis -Wheat) is a process

oriented management level model which has the
capability to simulate growth, development and yield of
wheat genotypes under diverse environments (Ritchie and
Otter, 1985; Otter er al, 1986; Ritchie, 1991). The
model has a balanced approach in terms of its emphasis on
the biophysics of crop growth and development, including
weather effects on phenology and water and nitrogen
stresses on general growth. The major components of the
model are the vegetative and reproductive development,
carbon balance, water balance and nitrogen balance
modules which relate the mass flow and information
transfer between different modules. However, it does not
simulate impact of phosphorous, weeds; and pest and
diseases on growth and assumes that they are taken care of
by management practices.

The model requires input data on soil, crop and
weather for its calibration in different environments. Crop
Data for one to three years for validating the model were
collected from experimental fields/stations for various
cultivars in wheat growing regions of India (Fig. 1) viz.
Sonalika (Pantnagar), HD 2285 (Faizabad, Ranchi),
Sonali and Rajesh (Pusa), HD 2329 (Jabalpur, Jaipur,
Ludhiana) , WH-147 and WH-542 (Hisar) and Raj 3077,
Raj 3765 and UP 2338 (Jaipur). The cultivars namely RAJ
3077. RAJ 3765, HD 2285, Sonalika and Sonali are
genetically late sown and early maturing while the rest of
the cultivars fall in early/timely sown and late maturing
group. Detailed data set on weather (Radiation, maximum
and minimum temperatures and rainfall), soil (Layer wise
information on saturation, field capacity, wilting
point, texture and hydraulic conductivity, albedo, first
stage evaporation, drainage, USDA Soil Conservation
Service Curve Number for runoff ) and crop management
(Dates of sowing, plant and row spacing, irrigation,
fertiliser etc.) were collected for the locations under
study.

2.1. CERES-wheat modules

The core of the model is comprised of different
subroutines to simulate crop phenology, growth, organ
development, soil water and nitrogen balance in soil-
plant-atmosphere continuum which are described in the
following sections:

2.1.1. Warer balance

The upper-most soil layer receives additions of water
from rain, melted snow and/or irrigation. The proportion
of rainfall that runs-off the soil is calculated from the
USDA Soil Conservation Service Curve Number
technique. The balance plus any irrigation infiltrates the
soil surface. The distribution of infiltrated water through
the profile is based on a cascading layer model, with
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TABLE 1

Characterisation of Genetic coefficients

Coefficients related to development aspects

Phyllochron interval (PHINT )
for spring cultivar,

Vemnalisation coefficient (P1V)

- It describes the thermal time required between emergence of two successive leaves and its value is taken 95

. It ranges from 0-9 and describes the relative amount of slowing down the development for each day of

unfulfilled vernalisation assuming that 50 days of vernalisation are sufficient for all cultivars.

Photoperiodism coefficient (P1D)

. The coefficient governs the relative amount that development is slowed when plants are grown in a

photoperiod 1 hour shorter than the optimum (which is considered to be 16 hours, Chipanshi e/ al. 1997).

Grain filling duration coefficient (P5)

- It accounts for thermal time in degree days above a base of 1°C where each unit increase above zero adds 20

degree days to the initial value of 430 degree days.

Coefficients related to growth aspects

Kernel number coefficient (G1 )
at anthesis [g").

Kernel weight coefficient (G2)

Spike number coefficient ( G3 )
when clongation ceases.

. The coefficients controls the kernel number per unit weight of stem (less leaf blades and sheaths) plus spike

. tis related to kernel filling rate under optimum conditions (mg/day).

. It accounts for the non-stressed dry weight (g)of a single stem (excluding leaf blades and sheaths) and spike

drainage calculated as a function of the water content
above the field capacity.

Model separates soil evaporation from plant
transpiration (Ritchie, 1972). The potential evaporation
(EO) calculation is based on the Priestly-Taylor method.
The equilibrium evaporation rate (EEQ) is calculated from
daily solar radiation, the combined crop and soil
reflection coefficient and the weighted mean daily
temperature. Potential evaporation is then calculated from
EEQ and the maximum air temperature. Soil evaporation
is computed as a function of EO and Leaf Area Index
(LAI) in two stages.

Roots growth into the profile is computed as a
function of daily thermal time and soil water content. The
root length density in each soil layer is calculated as a
function of root dry weight accumulation and a root
weighing function. This is used in determining root water
uptake from each layer as a function of soil water content.

2.1.2. Phenology

Essentially, plant development from sowing to
physiological maturity is divided into seven stages. Two
extra stages in the model allow for pre-sowing simulation
of the soil water balance and grain dry-down to harvest.
From sowing to physiological maturity, the main driving
force is temperature, but during stage 1 (emergence to

terminal  spikelet), ~vernalization, photoperiod and
phyllochron also influence the rate of development. New
leaves appear in first two actively growing stages as a
function of air temperature and a cultivar specific
phyllochron interval.

2.1.3. Growth

Potential dry matter is calculated as a function of
intercepted photosynthetically active radiation (PAR),
where PAR is set equal to 0.5% SOLRAD ( Daily total
solar radiation). The daily potential dry matter production
(PCARB, g plant ') is

7.5%PAR"®x [1-EXP (-0.85xLAI))

PCARB =
PLANTS PER SQUARE METRE

The actual rate of dry matter production (CARBO) is
usually less than PCARB due to the effects of non-optimal
temperature and water stress. CARBO is apportioned
between shoots and roots with a growth stage dependent
partitioning coefficient. Plant biomass comprised of dry
weights of roots, leaves, stem and grains is determined
using genetic coefficients.

The model requires seven cultivar specific genetic
coefficients  (Godwin et al., 1990). The genetic
coefficients are represented by “scale values” ranging
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TABLE 2

Genetic coefficients of various wheat cultivars

Cultivar Station P1V PID
RAJ 3077 Jaipur 05 2.5
RAJ 3765 -do- 0.5 23
UP 2338 -do - 0.5 43
HD 2285 Faizabad, Ranchi 0.5 21
Sonalika Pantnagar 0.5 25
Sonali Pusa 0.5 2.8
Rajesh -do- 05 2.8
C-306 Raipur 0.5 39
HD 2329 Jabalpur Jaipur 0.5 3.2
WH 542 Hisar 0.5 33

(- - EEN N - N I =

=)

from zero/ one to an uppermost value ( 9 ) for a genotype
which shows the maximum known expression of the trait
( Chipanshi et al., 1997). The “scale values™ are converted
to “biological values” within the model. The details of
these coefficients are presented in Table 1.

The genetic coefficients were derived iteratively
(Hunt et al., 1993) with independent data sets viz. dates of
sowing, anthesis and maturity, grain yield, above ground
biomass and grain density and weight. This involved
determining first values of phenology coefficients,
(PHINT, P1V, PID and PS5), and then values of the
coefficients describing growth and grain development,
(Gl, G2 and G3) so as to achieve the best possible
correlation between predicted and observed data for the
selected phenotypic and yield component variables. The
procedure for determining genetic coefficients involved
running the model initially with values derived elsewhere
in India for similar genotype, then rerunning the model
using a range of values of each coefficient until the desired
level of agreement between simulated and observed values
was reached. Iteration for coefficients were stopped when
the agreement reached +10%.

From the yield component data, the first genetic
coefficient set in the model was Gl that gives the
number of grains/m’> (GPSM) when multiplied by
plants. From the first approximation of GPSM with an
estimated coefficient, Gl Gl was calculated from the
averaged observed (GPSMo) and predicted (GPSMp) data
as under :

Gl = Gl x GPSMy/ GPSMp

G3 coefficient, which determines tiller production
and ear density (TPSM) was the next coefficient, set. Once
a reasonable agreement between observed and predicted
TPSM was obtained, G2 was adjusted to improve the
prediction of kernel mass. The coefficients P1V (0.5, 0.5),
PID (3.3, 2.5), P5 (2.3, 3.5), Gl (5.5, 2.3), G2( 3.5 2.5)
and G3 (2.5, 4.0) have been reported by Bishnoi er al.
(1996) for WH 147 at Hisar and Hundal and Kaur (1997)
for HD-2329 at Ludhiana respectively.

3. Results and discussions
3.1. Estimation of genetic coefficients

With the present state of art technology, it is
convenient to genetically categorise cultivar coefficients
related to development aspects than to growth. The genetic
coefficients which reflect the effects of climatic gradient
for various wheat cultivars in different agroclimatic zones
are illustrated in Table 2. In India, only spring wheat is
cultivated whose P1V is very low. The value for all the
cultivars was found to be 0.5.

Wheat cultivars considered in the study include both
timely and late sown. Timely sown varieties are
genetically more sensitive to photoperiod and late
maturing while late sown varieties are less sensitive to
photoperiod and early maturing. Values of photoperiod
sensitivity coefficient (P1D) derived for various cultivars
exhibit similar traits. Late sown varieties have lower
sensitivity (€ 2.5) with least value for HD 2285 while
timely sown varieties are more sensitive (>2.5) with
highest values for C 306 (3.9) and UP 2338 (4.3).
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Fig. 2. Comparison of predicted and observed dates of flowering and
physiological maturity

Thermal time coefficient (P5) governing grain filling
period ranges from lowest value of 1.9 to highest value of
8.9. Early maturing varieties are generally characterised by
lower range of values indicating shorter grain filling
period and the late maturing ones are with higher values.
Early maturing characteristics of the cultivars like HD
2285, Sonali, Sonalika, RAJ 3077 and RAJ 3765 are
reflected in lower values of P5 (< 3.5) simulated by the
model. Rest of the varieties generally possessing values
greater than 3.5 except WH 542 fall in mid-late/late
maturity group.

The coefficient controlling grain number /m* was
maximum in WH 542 and minimum in C 306. The grain
filling rate coefficient was found higher in WH 542 and
HD 2329 than other cultivars with Sonali possessing least
ability for this trait. The value of coefficient controlling
stem weight was higher in WH 542, Rajesh and Sonali
while it was more and less same in other genotypes.

3.2. Evaluation of phenological development

The derived genetic coefficients were used to
simulate phenological events and results of predicted and

[ y=0.7895x + 627.58

1000 2000 3000 4000 5000 6000
Predicted yield (Kg/ha)

Fig. 3. Observed and predicted yield of wheat genotypes

observed dates of flowering and physiological maturity for
all the varieties except WH-147 (Hisar) and HD 2329
(Ludhiana) are depicted in Fig. 2. The results indicate that
simulation of main physiological events viz. flowering and
physiological maturity are in close agreement with
observed ones and lie within range of 9% and 12%,
respectively. Similar results have been reported by Bishnoi
et al. (1996); Hundal and Kaur (1997). Accurate
prediction of different stages may help farmers to take
decisions on crop management operations linked to crop
phenology. Satisfactory simulation of phenology is also
evident from the following high correlation coefficients
and fitted regression equations :

Flowering Y=1.2288X -18.222 (r=0.84)
Physiological Maturity ¥ =1.3014 X -29.265 (r=0.83)

3.3. Assessment of grain vield

Grain yield which is the end result of interaction of
plant, soil and environment is given in Fig. 3. Yield of
all cultivars has been clubbed for evaluating their
performance in different environments. The simulated
yields lie within range of 4-15% of observed ones at
different locations with average variation of 8%. Results
are in agreement with that reported by Lal et al. (1997),
Bishnoi et al. (1996) and Hundal and Kaur (1997). The
performance of the model may be explained in terms of
high correlation coefficient and  fitted regression
equation as under: V= 0.8048 X -559.74 (r=0.82).

4. Conclusions
(i) CERES-Wheat is capable of simulating crop

development and yield of different cultivars in
wheat growing regions of India.



MAUSAM, 52, 3 (July 2001)

(i) Genetic coefficient developed for different
genotypes may be used with routinely observed
crop, soil and weather data for predicting
phenophases and yield.
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