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सार – èवसमाĮयी समेͩकत गǓतमान माÚय (एǐरमा) एक डेटा खनन तकनीक है िजसका Ĥयोग आमतौर पर समय 
Įृंखला ͪवæलषेण और भͪवçय के पूवा[नुमान के ͧलए ͩकया जाता है। अĤ×याͧशत ĤाकृǓतक आपदाओं जैसे बाढ़, 
तुषार,वनािÊन और अकाल से ͪवæव को बचाने के ͧलए जलवायु पǐरवत[न पूवा[नुमान आवæयक है। मौसम डेटा को सटȣक 
Ǿप से पूवा[नुमाǓनत करना एक चुनौतीपूण[ काय[ है। इस शोध पğ मɅ ARIMA आधाǐरत मौसम पूवा[नुमान उपकरण को     
R मɅ ARIMA एãगोǐरदम लागू करके ͪवकͧसत ͩकया गया है। 1951 से 2015 तक के भारत मौसम ͪव£ान ͪवभाग के                 
65 वषɟ के दैǓनक मौसम ͪव£ान डेटा एकğ ͩकए गए। इसके बाद डेटा को तीन भागɉ मɅ ͪवभािजत ͩकया                         
गया – (i) ͪवæलषेण और पूवा[नुमान के ͧलए Ĥͧश¢ण सेट (1951-1975), (ⅱ)  Ǔनगरानी सेट (1975-1995) और (ⅱi) वैध 
सेट (1995-2015), चूँͩक ARIMA मॉडल केवल िèथर डाटा पर काय[ करता है। अत: डाटा Ĥवृͪ ƣ और ऋतुǓनçठ होना 
चाǑहए। अत: ͪवæलेषण के ͧलए ĤाÜत ͩकए गए डाटा को पहले चरण के Ǿप मɅ, डेटा Ĥवृͪ ƣ और ऋतुǓनçठता के ͧलए 
जाँच कȧ गई। ͩफर डेटा के पǐरवत[न का उपयोग कर के डेटा कȧ Ĥवृͪ ƣ और ऋतुǓनçठता को हटाने के ͧलए डाटा सेट 
Ěांसफोम[ ͩकए गए और अǓनयͧमतताओं को साधारण गǓतमान माÚय (SMA)  ͩफãटर और घातांकȧ गǓतमान माÚय 
(EMA) ͩफãटर का उपयोग करके दरू ͩकया गया। ARIMA ͪवͬध ARIMA (p,d,q) पर आधाǐरत है जहा ं p आंͧशक 
ऑटोकोǐरलेशन का एक मान है, d वत[मान और ͪपछले मानɉ के बीच अंतर अंतर है और q ऑटोकोǐरलेशन का एक मान 
है| वत[मान अÚययन मɅ, हमने तापमान डेटा के ͧलए ARIMA (2,1,3) और वषा[ डेटा के ͧलए ARIMA (2,0,2) पर काम 
ͩकया। नतीजतन, इससे अगले पġंह वषɟ के ͧलए भͪवçय के मानɉ का अनमुान लगाया गया। वषा[ डाटा और तापमान 
डाटा के ͧलए वग[मूल औसत ğुǑट मान Đमश: 0.0948, और 0.085 थे िजसस ेएãगोǐरदम के सहȣ ढंग से काम करने का 
पता चलता है। ĤाÜत हुए डेटा का उपयोग सौर सेल èटेशन, कृͪष, ĤाकृǓतक संसाधनɉ और पय[टन के Ĥबंधन के ͧलए 
ͩकया जा सकता है। 

 
ABSTRACT. Autoregressive integrated moving average (ARIMA) is a data mining technique that is generally 

used for time series analysis and future forecasting. Climate change forecasting is essential for preventing the world from 
unexpected natural hazards like floods, frost, forest fires and droughts. It is a challenging task to forecast weather data 
accurately. In this paper, the ARIMA based weather forecasting tool has been developed by implementing the ARIMA 
algorithm in R. Sixty-five years of daily meteorological data (1951-2015) was procured from the Indian Meteorological 
Department. The data were then divided into three datasets- (i)1951 to 1975 was used as the training set for analysis and 
forecasting, (ii)1975 to 1995 was used as monitoring set and (iii)1995 to 2015 data was used as validating set. As the 
ARIMA model works only on stationary data, therefore the data should be trend and seasonality free. Hence as the first 
step of R analysis, the acquired data sets were checked for trend and seasonality. For removing the identified trend and 
seasonality, the data sets were transformed and the removal of irregularities was done using the Simple Moving Average 
(SMA) filter and Exponential Moving Average (EMA) filter. ARIMA is based on method ARIMA (p,d,q) where p is a 
value of partial autocorrelation, d is lagged difference between current and previous values and q is a value from 
autocorrelation. In the present study, we worked on ARIMA (2,0,2) for rainfall data and ARIMA (2,1,3) for               
temperature data. As a result, it estimated the future values for the next fifteen years. The root means square error values 
were 0.0948 and 0.085 for rainfall data and temperature data respectively which show that the algorithm worked 
accurately. The resulted data can be further utilized for the management of solar cell station, agriculture, natural        
resources and tourism. 

 
Keywords – ARIMA, Weather forecasting, Time series analysis. 

 
1.  Introduction 
 
 In today's environment, climate plays a vital role in 
the sustainability of life on earth. However, the climate is 

continuously changing causing a severe issue for the 
planet. Rainfall is an essential element of the hydrological 
cycle. The pattern of rainfall is continuously changing due 
to the effects of changing climatic conditions. This change 
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causes many severe problems like flooding, landslide and 
drought (Shivhare et al., 2017). These problems affect the 
agriculture and farming. In a country like India where 
agriculture and farming are its backbones, the most 
significant concern is the success and failure of the crop 
every year. A minute change in the seasonal rainfall and 
temperature may lead to a devastating effect on crops 
(Shivhare et al., 2018).  Temperature data is also essential 
for the sustainability of agriculture, vegetation, water 
resources and tourism (Brath et al., 1999). Also, the 
temperature has a direct impact on evaporation & melting 
of snow or ice and an indirect impact on precipitation 
condition and atmospheric stability. Therefore accurate 
prediction of future rainfall and temperature are essential 
for preventing the country from natural disasters and 
managing natural resources (Shobha and Shobha, 2014; 
Sawale and Gupta, 2013; Haviluddin et al., 2015). 
 
 It is a challenging task to predict future climate data 
accurately (Nikam and Meshram, 2013). Although many 
algorithms have been proposed and developed but still, 
accurate forecasting is robust. The weather forecasting can 
be done using two ways: First way is to study the weather 
for processes to model the underlying physical laws 
however it may not be feasible because the processes like 
rainfall are the result of various complex processes which 
may vary both in space and time. The second way is to 
forecast the data based on pattern recognition algorithms 
like data mining techniques and machine learning (Luk                 
et al., 2001). 
 
 Data mining is a study of how to determine underlying 
patterns in the data. Experts utilize data mining techniques 
like the autoregressive integrated moving average 
(ARIMA), artificial neural network (ANN) and machine 
learning for weather forecasting (Shobha & Shobha, 2014; 
John and Marohasy, 2017). The preprocessing of the data 
for forecasting using data mining is very important. Good 
preprocess data will create good knowledge and will give 
a better forecast result (Nhita et al., 2015). 
 
 Data mining techniques are getting utilized more and 
more for future weather forecasting. Scientists have 
reviewed different data mining techniques which could be 
used for data forecasting. These techniques were artificial 
feedforward neural network, a fuzzy interference system, 
decision tree method, time series analysis, learning vector 
quantization and biclustering techniques. Experts are even 
trying to use the data mining technique for predicting 
rainfall of an area by dependent features (Mohapatra et al., 
2017). The most utilized technology of data mining is 
ANN and ARIMA. Scientists are utilizing ANN 
techniques like backpropagation neural network (BPNN) 
for predicting monthly rainfall data (Haviluddin et al., 
2015; Sachan, 2014). Mean, maximum and minimum 

temperature data is predicted using BPNN for solar cell 
management (Routh et al., 2012; Ustaoglu et al., 2008). 
Sawale and Gupta, 2013 have employed the BPNN & 
Hopfield network model for weather forecasting. Luk               
et al., 2001 has applied three types of techniques-feed 
forward neural network (FDNN), partial recurrent neural 
network and time delay neural network for rainfall 
forecasting. Nong (2012) employed SSA for rainfall 
pattern forecasting. Wang and Wu (2012) proposed a 
novel hybrid radial basis function neural network based on 
wavelet support vector machine for rainfall forecasting. 
The scientist also forecasted one-day advanced rainfall 
intensity to assess the risk of the landslide (Devi et al., 
2014). Some experts have used ARIMA model for 
weather forecasting (Pratiher et al., 2016; Toth et al., 
2000). Experts have compared the ARIMA model with 
different models like single input and multi-input and 
transfer function (Saikhu et al., 2017) and ARMA 
(Valipour et al., 2012). They concluded that ARIMA is 
better than ARMA. 
 
 Weather forecasting using data mining technique can 
be done into methodology by (i) Statistical Method                 
(ii) Numerical Weather Prediction Models. The weather 
forecasting can be done using a statistical method like 
autoregressive (AR), moving average (MA), autoregressive 
moving average (ARMA), Autoregressive integrated 
moving average (ARIMA) multiple regression. Each 
method has its limitations. AR model regresses against the 
past value of the series. MA model uses past errors as an 
explanatory variable. The AR model is suitable only for 
linear correlated data and is not appropriate for nonlinear 
data.  AR and MA can be combined to form a general and 
useful class of time series model known as the ARMA 
model; ARIMA gives better results than ARMA. The 
details of this methodology are explained in further 
sections. It is usually in statistical technique when the data 
is responsibly extended and the correlation between past 
observations is stable (Darji et al., 2015).  
 
 In this study, the ARIMA algorithm is used for 
future climate data forecasting. Daily climate data from 
1951 to 2015 was used for the forecasting. The algorithm 
was implemented using the R language. The data was 
divided into three sets. The first set is the training set from 
1951- 75 used for analysis and forecasting; the second set 
is the monitoring set, the forecasted data from 1975 to 
1995  was used for monitoring and testing; and the third 
set is the validating set, the data from 1995 to 2015 was 
used for validation. The primary objectives of this paper 
are as follows:  
 
(i) Plotting the data as a time series plot, 
 
(ii) Checking the data, if it has any trend or seasonality, 
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Fig. 6. The graph of forecasted and observed values 

 

Note: Unit of temperature in degree Celsius, unit of Rainfall is mm and 
Time is in years 

 
 

TABLE 1 
 

Statistical measures of ARIMA models 
 

ARIMA(p,d,q) RMSE MAPE MAE Normalized 
BIC 

Lungs Box 
Q statistics 

ARIMA(2,0,2) 0.094 0.32 0.053 13.3 0.8 

ARIMA(2,1,3) 0.085 0.31 0.049 13.3 0.6 

 
 
 where, 
 
 n = the number of residuals, 
 
 h = number of time lags includes in the test, 
  𝜌2, k = the residual autocorrelation at lag k. 
 

The values of all these Fit parameters for both the 
ARIMA models are given in Table 1. These values show 
the skills of the ARIMA models for forecasting future 
climate data. 
 
 3.2. Advantages and limitations of the ARIMA 

model 
 
 ARIMA modeling has frequently been highlighted as 
a useful forecasting approach. The main advantage of the 
ARIMA model is for short-run forecasts with high-
frequency data the results may be hard to beat. They also 
have the advantage of being less sensitive to the 
underlying assumptions of the nature of the data 
fluctuations than many other systems. However, while the 
general form will handle many functional forms, the 
specific form identified must match the actual data closely. 
 
 Limitations of ARIMA model are the ARIMA 
method is appropriate only for a stationary time series 

(i.e., its mean, variance and autocorrelation should be 
approximately constant through time) and it is 
recommended that there are at least 50 observations in the 
input data. Because of the extensive data requirements, the 
lack of available updating procedures and the fact that 
they must be estimated using nonlinear estimation 
procedures, the ARIMA models tend to be high cost. It is 
also assumed that the values of the estimated parameters 
are constant throughout the series. 
 
4. Conclusions 
 
 In this study, the ARIMA model was used to forecast 
future climate data. The accuracy of the model was 
calculated according to the root mean square error 
(RMSE) estimated for each forecasting. It was found that 
the RMSE estimated for forecasting rainfall data using 
ARIMA(2,0,2) was 0.094 and the RMSE estimated for 
forecasting minimum and maximum temperature using 
ARIMA(2,1,3) was 0.085. By looking at the values of the 
RMSE, it can be concluded that since the error is minimal, 
the ARIMA model has forecasted the data accurately. 
Apart from these values, the forecasted value of the 
ARIMA model was compared with the observed values. 
The graphs of forecasted and observed values of minimum 
temperature, maximum temperature, rainfall data are 
shown in Fig. 6, which concludes that more than                       
90 percent of values forecasted by the ARIMA model are 
accurate. These values can be further used for 
hydrological and sediment yield modeling, solar cell 
management, managing agriculture and tourism, etc. This 
study showed that data mining techniques are 
straightforward and helpful for forecasting future weather 
data.  
 
 Disclaimer 
 
 The contents and views expressed in this research 
paper/article are the views of the authors and do not 
necessarily reflect the views of the organizations they 
belong to. 
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