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ABSTRACT. The efficient Fourier transform (EFT) and FFT algorithms are described and their
computational efficiencies with respect to the direct method are discussed. An efficient procedure is
proposed for the reordering of data set; the use of EFT algorithm for the initial Fourier transforms
and restricting the size of final subsets to not less than 4 is also suggested for saving computation
time in the FFT. It is found that on average the FFT with the proposed modifications is more than
twice as fast as the original FFT. The amount of overhead operations involved in computer routine,

based on the modified FFT is estimated.

1. Introduction

In recent years various spectral models of the
atmosphere have been developed by Bourke (1972,
1974) and others, and used extensively with success
in many dynamical studies and nuwmerical weather
prediction. The current revival of the interest in
spectral models, is apparent from the sudden increase
in the volume of the reported studies using spectral
techniques, particularly in the last decade. It is linked
to the fact that presently spectral models are as effi-
cient as grid point models with respect to computation
time which has been made possible by the advent of
the transform method developed independently by
Orszag (1970) and Eliasen et al. (1970) for spectral
multiplications. In the transform method the compu-
tation of the non-linear terms are performed in the
following two stages. In the first stage the variables
are transformed from the spectral space to the physi-
cal space and the grid point values of the non-linear
terms are obtained. For this purpose the grid point
values of the variables involved in the non-linear terms
at Gaussian latitudes and equally spaced longitudes
are obtained from their spherical coefficients by the
use of Legendre inverse transform along latitudinal
direction and the Fourier inverse transform along
zonal direction. Finally, the grid point values of the
non-linear terms are obtained by multiplications of the
required values. In the sccond and final stage the

spectral representation of the non-linear terms are
obtained by computing the spherical coefficients
from their grid point values with the help of the
Legendre and Fourier transform along latitude and
longitude respectively. The overall performance of the
transform method is determined to a large extent by
the saving achieved in computation time in performing
the Fourier transforms,

The purpose of the FFT (Fast Fourier Transform)
is to develop an efficient algorithm for computing the
sums occurring in the expressions for Fourier trans-
form. The FFT algorithm, generally involves recur-
sive relationships, when used reduces considerably the
number of arithmetic operations involved in compu-
ting the Fourier transform. The first FFT algorithm
was introduced by Cooley and Tukey (1965) and
subsequently its other versions were developed. The
original FFT algorithm of Cooley and Tukey requires
that the length N of data set should be even and
preferably its major part be expressible as the pro-
ducts of factor 2 in order to exploit the full potential
of the algorithm. Some other versions of the FFT
as discussed by Temperton (1977) seem to be more
efficient than the Cooley and Tukey algorithm and
also applicable to more general cases where the Cooley
and Tukey algorithm fails, Even in cases when N
cannot be factorized as a power of 2, but can be
factorized as a power of some odd number, these
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methods are applicable, However, all these FFT ver-
sions require more computation time for the N which
is factorisable as a power of some odd number com-
pared to the case of a nearest higher N, which can
be factorized as a power of 2. Therefore, it is still
advantageous to improve the efficiency of the FFT
algorithm of Cooley and Tukey in order to make it
comparable to the other fast versions of the FFT.

The saving in computation time realised in actual
practice by use of the FFT algorithm is much less
than the theoretical expectation based on its. computa-

tional efficiency. The rcason for this discrepancy -

between actual and theoretical efficiency is due to the
fact that considerable amount of extra computation
time is required for generating the various indices for
transfering information from one memory location to
another and the rcordering of data set required in
the implementation of the FFT algorithm. The opera-
tions associated with these factors may be termed as
overhead operations and they are not taken into con-
sideration in the theoretical efficiency. Another factor
responsible for slowing down the performance of the
FFT algorithm is the use of inefficient method for
computing the initial Fourier transforms. In this study
the main objective is to suggest the procedures for
reducing the computation times in the overhead opera-
tions and in the evaluation of the initial Fourier trans-
forms in order to increase the computational efficiency
of the Cooley and Tukey algorithm.

2. The DFT and EFT algorithms

Let us consider a one dimensional periodic field
S(x) of period L, observed over a set of equally spaced
points {x;} at the interval of A x, such that xj=;j Ax
The discreate field is represented by the set { f; } where
fi=f(x;) denotes the observed value of the field at
the point x;. The periodicity of the discrete field
implies that fy.;=f; where N is the number of
intervals in the period L and assumed to be even. The
discrete field { f; } is represented as a discrete Fourier
series.

M—1
Ao 2 : 2 7 mj 2T my
j}: 2 + (Am cos __.-V— - B 81N N' )
m=1
A 2aM;
_|_42“~‘f cos fﬁ—’forj=1,2s-~--.-N (1)

where M=N/2 and A4, and B, are the Fourier co-
efficients given by :
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(A,,. B,)isthe Fourier transform of { f; },and { fj } is
the Fourier inverse transform of (4,,, 8,). Eqns. (1)

and (2) together ccnstitute a discrete Fourier transform
pair.

The numerical algorithm based on (2) for computing
the Fourier transform will be called Direct Fourier
Transform (DFT). Let us count one multiplication and
one addition as one machine operation. The total
number of the Fourier coefficients are N and for each
coefficient N machine operations are required as evident
from Egn. (2). Therefore, N2 number of machine
operations are involved in computing all the Fourier
coefficients. The most time consuming part of this
algorithm is the direct computation of the N Ztrigono-
metric functions. However, this computation time
can be considerably reduced by using the following
trigonometric relations :

cos (n+1)8 = cos n@ cos § — sin nf sin ¢

and (3)
sin (n+1)8 = sinnf cos @ + cos nf sin

2N* number of machine operations are required for
computing N 2 number of trigonometric functions from
Eqn. (3), under the approximation that two multiplica-
tions and one addition are equal to two machine opera-
tions, which is very nearly true. The final estimate of the
total number of machine operations required in comput-
ing the Fourier transform by using the DFT algorithm
is 3N2

An efficient Fourier transform (EFT) method as
discussed by Ralston (1963) is based on the following
algorithm for computing the sums in Eqgn. (2).

2 27 m
Am == —ﬁ_f Lf.\"'*' U], m COS —jv_' = U:!! m) (43)
and
2 . 2m7m
By = N Ui m SIn— N (4b)

where, Uj,,, and U,, ,, are computed from the follow-
ing recurrence relation

Uk, m= fit2 cos LITT— Utrvra—Urtm  (5)
for f=N—1, N—2,........, 1 and UN’ w=Ux+1:m=0:
The EFT algorithm lies somewhere in between the DFT
and FFT algorithm in computational efficiency. The
computation of Ug, ,, by Egqn. (5) requires one
multiplication and two additions, assuming that the
cosine function is stored. We can approximate this to
4/3 machine operation. Thus the total number of machine
operations required is 2N2/3 Further, it is also as-
sumed that all the required trigonometric functions are
stored which is a practical assumption in this case. It is
evident from above, that theoretically the EFT algori-
thm is 4.5 times faster than the DFT algorithm.

3, The FFT algorithm of Cooley and Tukey

Let us introduce a superscript in the Fourier coefficients
to denote the length of data set. For saving a few multi-
plications, we dropped the factor 2/N from Eqn. (2)
for further discussion here but the coefficients so obtained
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will be multiplied by this factor. The required recursive
relations for the Fourier coefficients for the Cooley and

Tukey algorithm are obtained from Egn. (2) as
follows :
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Similarly it can be shown that
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(C , D )is the Fourier transform of the data set
17 ) O S R N/2, constituted by the
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odd data points and (E, . D "is the Fourier
transform of the data set {f5;}, j=1........... N/2,
constituted by the even data points, and the length of
each field is N/2. In the first stage of the FFT method,
the data set is split intotwo subsets. The Fourier co-
efficients of the dataset are obtaind from Eqns. (6a)
and (6b). M 1=N/4, when N/2 is even and M 1=
(Nf4—1/2) when N/2 is odd. It is clear that from Eqns.
(6a) and (6b). Fourier coefficients of the original data
set can be determined only up to M 1. The recursion
equations for determining the remaining Fourier
coefficients, for which m lies in the closed interva!
[M 11, M], are obtained after taking into account
the following symmetric relations :

NJ2 N2
= €
N/2—m m
N/2 N/2
D = —D
N[2.-m m
N/2 N2
E = g
N/2—m m
N2 Nj2
and F = -F
N(2—m m (9)
Replacing m by N/2—m in (6) and using (9) we get
N 2am N2 . 2mm ¥
A = — cOs C —sin“—=—'D
N[2—m N " B N m
N2
+ E (10a)
m
N N2 N2
B = sin i C — cos 2am D
N[2—m m N m
N2
— F (10b)
m

These are the required recursion equations for com-
puting the remaining Fourier coefficients.

In the second stage each subset is further divided into
two subsets if N/2 is still even and this process of splitt-
ing will be continued till each subset contains only an
odd number of data points, we can express the length of
data set as

where Ny and 27 zre the length and number of the
final subsets respectivelyand p represents the number
of times the original data setis divided into subsets
which is a positive integer.

To understand how the FFT works, let us consider an
example of the data set of legnth N=12. In this case,
N,=3, p=2 and the number of subsets is 4. The
complete reordering of the original data set in thg
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Fig. 1. Flow diagram showing stage by stage reordering of data set from top to bottom and in the
opposite direction indicating the process of obtaining Fourier transform for ¥=12

TABLE 1

Computation times (in milliseconds) on CDC-3600 for Fourier trans-
forms of data sets of length \' = 16

DFT EFT FFT Modified EFFT
FFT

(2) (3) (4) (5) (6)

17.0 : 14.4 8.6 6.0

59.0 A 31.3 18.8 14.7

139.0 40.2 30.4 25.9
273.0 5. 72.6 44.3 32.7
541.0 A 90.4 67.4 57.7
8

927.0 2 151.9 97.2 73.

TABLE 2

Computation times (in milliseconds) on  CDC-3600 for Fourier
transforms of data sets of length ' <~ 8

Modified
FFT

present example is shown stage by stage in the Fig. 1.
At the top of the figure is shown the data set, which we
call zeroth stage of reordering process. The symbols
inside the boxes denote the values of data and their
positions with references to the zeroth stage. In the
figure,a group of boxes represents the data set or a subset.
The reordering of the original data set is essential, for
the working of the Cooley and Tukey algorithm. The
Fourier coefficients of each of the four subsets can be
obtained by the direct or the efficient method. From

these initial Fourier coefficients, the final Fourier
coefficients of the data set are obtained in two stages as
indicatel in the figure, with the help of Eqns. (6)
and (10).

4. Efficiency of the FFT algorithm

Let us consider a data set o length N which is
splited p times into the 27 subscts, eachof length N,.
The number of machine operatiors required for obtain-
ing the Fourier coefficients of all the 27 subsets, at pth
stage by the direct method is 27 Ny (Ng—1), the few
additions required for the zeroth ccefficients are neglect-
ed. The number of operations required for obtaining the
Fourier coefficients of all the subsets at each stage
preceding the pth stage is the same and equal to N.
Here, we have not counted the number of multiplications
involved in the computations from Eqn. (10) because
they are same with those of Eqn. (6), already taken into
account. Further, the additions of Egn. (10) are neg-
lected because nearly an equivalent number of the
machine operations are saved in the computations by
using the simplified form of the Eqns, (6) and (10) for
m=0 and M,. The recursion relations have to be
used p times to get the final results. Finally, the N
Fourier coefficients so obtained are multiplied by 2/N
and this means an additional N machine operations.
Therefore, the total number of operations (S) required
in the FFT may be written as

S=N (No+p)

It is assumed in the above computation that the
trigonometric functions are readily available. Thus the
comparative efficiency of the FFT over DFT is given
by

3Ny 27
(No+7) (0

It is evident from Eqn. (11) that Eis large for the higher
values of p. In the direct method it is not practical to
store all the required trigonometric functions, since the
number of storage locations required for this purpose
is (N2-+1), which is quite high for large N compared
to the number of locations (N/2 4-Ny2) required in the
FFT. The first part in the above formula represents the
number of distinct trigonometric functions required in
(6) and (10), and the second part for obtaining the
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initial Fourier coefficients of the final subsets by the
direct method, which is qute small, and hence a practical
proposition to store them. This feature of the FFTis
one of the major factors for the large gain in computa-
tional time. The actual gain in the FFT over DFT
given by Egn. (11) is an over estimate, since the re-
quirement of reordering of the data set and generation
of a number of indices required for the effective use of
the recursion relations without using extra memory
storage means extra operations which are not considered
in the derivation of Eqn. (11). It may be added here
that the computational efficiency of the FFT with
respect to the EFT is 2/9 times of E.

5. The proposed reordering procedure for the FFT

In this and the next sections we shall discuss the
main objectives of this paper, namely : (2) accelerating
the process of reordering of the data set into the subsets
and (b) increasing the efficiency in computing the
initial Fourier transforms. The reordering of the data
set can be achieved by a many steps direct splitting pro-
cedure where odd and even positioned values are group-
ed together at each step. This procedure for the reorder-
ing is inefficient in performance as will be shown sub-
sequently.

From the example illustrated by Fig. 1 and from
other examples, the following rule regarding the re-
ordering process of the original data set can easily be
deduced by inspection. It may be noted in this connec-
tion that the index of data which occupies the first
position in the first subset is 1, the remaining (N,—1)
data in this subset have indices which are higher by
27 from the preceding one. Further, the indices of the
data in the next2°( —1) subsets are larger by 271 from
the corresponding indices of the first 2°( —1) subsets,
the indices in the next 21 ( =2) subsets are larger by
272 from the corresponding index of the first 21( =2)
subsets; and so on,till finally the indices of the data
in the last 27—1subsetsare larger by 2°(=1) from the
corresponding indices in thefirst 271 subsets. Let g,
denote index of the data point in the original set, which
now occupies the position m, in the reordered set.

The rule for correspondence between the positions
of data points in the original and reordered data set
can be represented mathematically as -

On = Qum—k 2077 (12)

where,

J=05 1; Zyas smaen P

m=2,..co0covns , Ny for j=0;

m=N, 2F1 __.... , Np2iforj=1,2,....,p;

k=1 for j=0;

k=N, 2i—1 for j=12,........ . P
and

q1 =1

Using these indices ¢, the reordering of data set is
accomplished in a single step. This procedure of the

reordering in FFT is easy to program and is implemented
without any extra memory requirements. We can call
the FFT with this reordering procedure as the modified
FFT.

Computational times of the FFT for different lengths
N is given in Table 1. Column 5 shows the time
required for the modified FFT and column 4 is for the
FFT with the reordering process based on the splitting
of a set into subsets, stage by stage. In both the cases the
DFT method was used for the initial Fourier transforms.
It can be seen by comparing the time noted in the two
columns that the present reordering procedure resulted
in the decrease of the computational time by about 407,
for the cases when N, =1. However, when N, =3,
this decrease is only atound 25%,. This difference in
the efficiency in the two cases is due to the fact that in
the second case when N,=3. the relative contribution
of the reordering time to the total time is less compared
to the first case when N, =1.

6. An efficient FFT (EFFT) algorithm

From Table ?, it can be seen that the EFT algorithm is
far superior to the modified FFT for N< 8 However,
it is expecred because even the theoretical efficiency of
the FFT as given by (11) is considerably less than that of
the EFT.

Therefore, in order to increase further the efficiency
of the modified, FFT, it is proposed that the each subset
of the reordered set must not have less than four data
points, i. e., N,=>4, and the initial Fourier transforms
are to be obtained by using the EFT algorithm. The
FFT algorithm with this modification coupled with
the modified reordering procedure for the, data set is
given in the last section and will be called as EFFT. It
may also be noted that the storage requirement for the
trigonometric functions, (N/2 -1 N,) in number is con-
siderably less, particularly for large N, than the
case when DFT is used for obtaining the initial Fourier
coeflicients.

A comparison between columns 4 and 6 of Tabie 1
has shown that the saving of computation time in the
EFFT is around 55% of the FFT. for the cases when
N,=1, in other cases when N,=3 it is about40%,.
This difference in the saving of the computation times
for the two different types of cases is as explained in the
last section. Thus the EFFT is more than two times
faster than the FFT. Itisnot possible to make precise
comparison of the computation times between the
EFFT, proposed here and the other fast versions of the
FFT. A rough estimate of the efficiency of the EFFT
can be obtained with the help CPU times on CDC—
6600, reported by Temperton (1977), for the routines
based on his version of the FFT and that of Norman
Bernner of MIT, based on Cooley and Tukey version
of the FFT for the power of 4. The computation times
were reported for the Fourier transforms of different
lengths N. After taking into consideration th= difference
in the speed of the two computer models, it can be
said that the EFFT as proposed here is comparable to
t heother versions in the computational efficiency.
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7. Estimation of the overhead operations in the EFFT

As indicated earlier, the theoretical efficiency of the
EFFT is not achieved in its actual performance. This is
due to the significant contribution of overhead operations
in the total compugation time. The increase in the effi-
ciency of EFFT is contributed mostly by saving in the
computation times of overhead calculations due to the
suggested procedures for this purpose. It seems natural
to know the extent of overhead operations (R) still
required in the EFFT as a percentage of the main
machine operations, counted for computing the theo-
retical efficiency. It is understandable that the number of
overhead arithmetic operations is dependent upon the
parameters p and N,. The number of main machine
operations required in the EFFT is also a function of
these two parameters. A more simplified assumption
and still realistic may be that the ratio of the overhead
and the main operations is a constant. Under this

assumption the theoretical (E;) and actual ( E:) effi-
ciencies of EFFT with respect to EFT are related as :

]__ E_]
E =0 rjioo) a»

2

El=*9— E

E' is computed as the ratio of computation times of

EFT and EFFT presented in columns 3 and 6 respectively
of Table 1 and E from Egn. (11). R is computed for
different data lengths N of the table, and its average
value is determined to be 113%,. This means that even
in the present form of EFFT, more computation time
is used in performing overhead operations than-the
main operations . On the basis of above result, it can be
said that still there exists a scope for achieving significant
gain in computational efficiencies of the various FFT
algorithms by further reduction in the number of over-
head operations alone. Further calculations revealed
that around 309 of the total overhead computation
time is utilised in the reordering procedure.

8. Conclusions

It has been shown in this paper that the computationa
efficiency of routine based on the Cooley and Tukey

algorithm can be considerably enhanced and made
comparable to the other recent fast versions of FFT by
reducing the overhead computation time involved and
by using the efficient algorithm for computing the initial
‘Fourier transforms. For this purpose an efficient pro-
cedure has been proposed for the reordering of datu set.
It has been demonstrated that by restricting the size
of final subsets to be not less than 4, the significant
saving in computation time can be achieved. Further,
it has been estimated that in the accelerated version of
the FFT algorithm of Cooley and Tukey, the computa-
tion time associated with performing of overhead opera-
tions is greater than that of the main operations, even
after incorporating the proposed modifications for this
purpose.
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