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ABSTRACT. We present a general method to solve an optimal conirol problem for a free-
boundary system associated with a continuous casting process. Firstly, we formulate the physical
problem by using the enthalpy function of the system, which is a maximal monotone operator. By

the introduction of the Yosida approximation,

we obtain necessary optimality conditions. Then

numerically, we use a gradient method. Finally some numerical results are presented for two cases of

contraints,

1. Introduction

The expansion of the continuous casting process has
been very important since ten years, principally for
two reasons : an economic motivation, for this tech-
nique the price of the production is less than for the
classical method and a metallurgical reason, connected
to the quality of the steel. For those facts, it is very
interesting to develop methods to optimize the produc-
tivity of a such system. Mathematically, we have a
free-boundary problem (solidification of the steel) of
Stefan type. The numerical methods to solve a such
problem have been very extensively studied, in parti-
cular by the use of variational inequalities (Duvaut
1976, Lions 1975). In this paper, we formulate the
problem have been very extensively studied, in parti-
tion, we can study very general problems (non-linear
diffusion operator, general boundary conditions, ...).
The optimal control problem, we consider, is to deter-
mine a control (exchange coefficient between water
and steel) to maximize the speed of the cast, with
different structural and metallurgical contraints. With
simplified problem, we present in this paper a numeri-
cal method to compute the optimal control.

In the first part, we explain the physical problem
and the mathematical formulation. In a second part,
we define, for a semi-discretized problem, necessary

optimality conditions and we propose a numerical
method based on the gradient algorithm. Finally in
a last part, we present some numerical results,

2. The continnous casting process

2.1. The physical system

The principle of the continuous casting process is
to cast the steel in a mould the bottom of which is
constituted by the solidified ingot, which is conti-
nuously extracted. The scheme of a such system is
given in Fig. 1,

The steel is casted continuously in a copper mould
by a nozzle. At the end of the mould, a very small
thickness, which is sufficient to avoid break out, is
solidified. In a second part, the steel is cooled by a
spray system, which is devided in different zones.
Each zone is independent. At the end of this part, the
steel is cut by a cutting torch.

We distinguish several types of products, following
their dimensions : slabs, blooms, billets.

2.2, The state equation

_ To modelize a such system, we consider the follow-
ing equations. 7, (resp. T,) denotes the temperature

*This work has been done, in collaboration with the Research Institute of the French Steel Industry (IRSID) and presented jn the sympo-
sium Indo-French school on recant advances in Computer Techniques in Meteorology, Biomechanics and applied systems" held at ILLT,,
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186 C. SAGUEZ

of the steel in the liquid (resp. solid) phase. T, verifies
the heat equation :

pV— —AT1 =0 (2.1)
b

with I the speed of extraction,
¢) the heat capacity of the liquid,
p thedensity of the steel
In the solid phase, we have similarly the equation :

pV%TZ —_CT3=0 (2.

N
~—

with ¢, the heat capacity of the solid.

Alongthe front of solidification S(r) the free-bcundary
we have the two conditions :

T | sip = T3 | sin=Tg (Is temperature of solidi-
fication) (2.3)

grad Ty.m—pgrad 7o.n—L q.n 2.4

with 7, the latent heat of solidification

q. n the normal speed of the free-boundary.

~ Finally, we give the boundary conditions and the
initial conditions. To simplify the presentation. we
consider the unique boundary condition :

el

T T—T,) | = (2.5)
with # a exchange coefficient between the steel and tle
water, 7, the temperature of the water,

In practice in the mould, the flux of heat 37/an is
given and for the spray-eystem, we have similar condi-
tions as above. As initial condition, we take :

T(x,0) = Ty (x) (2.6)
3. The optimal control problem

The optimal control problem is to find / (coefficient of

exchange) which maximize the speed of extraction such

-that structural and metallurgical contraints are verified.
More precisely, we have the contraints ;

(i) the quantity of water, we can use, is bounded,

(i) the steel must be completely solidified before the
cutting-torch.

(iii) at the unbending point, the temperature must
verify the condition :

T e Ty, T

~ (iv) the gradient of the temperature along the boundary
is bounded.

In this paper, we don’t consider exactly this problem
but a sub-problem : to find an admissible control It
such that the state of the system verifies constraints
(i), (ii). (ii). So mathematically, we have the following
problem. If T denotes the temperature of the solid and
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the liquid and if 8 = Ty — T,

it is easy to prove that
# is solution of the system :

{ oV g% — A6=0; u < G(o) (3.1)
20

3 o L h(8—8) | 5 =0 (3.2)

L 0(x,0)=0(x): u(x.0)=uqy(x) € G(8) (3.3)

with ,=Ts—T, and G(g) = H (Ts— ) ( H enthalpy
for the. system). G is a maximal monotone operator,
the graph of which is given in Fig. 2.

We assume that :

Nz :
ft=z h.'XE_sh.'G R
i=1 -

(3.4)
with Nz number of zones of the spray-system.
X&; characteristic function of the zone Ej.

Then we introduce the functional :
JW = | =L 250 (3.5)
We consider two types of contraints :
Case 1 \
[ 0<him < hi <hiy
l Nz
' z Ct,‘k,‘ (‘_-;DM (36)
L =
Case 2
[0 <him <h; <hint
4
_l._ 3‘(xa f])é_ﬂ[ (3.7)

which ‘cbrrespond respectively to the constraints (ii)
and (iii). So the optimal control problem is to find %
in the admissible set of controls U,; such that :

J (i) <J (h) vhelUy

Remark 2.1
The problem is, in fact, a particular case of a general
optimal control problem of a Stefan system. So the

method, we present in the following part, is general
for all problems of this type.

(3.8)

4, Numerical method

4.1. Transformation of thestate equation

Following a result of a Bermudez. & Moreno (1978),
we have the equivalence :

ueG(0) =2 u=Gu (0 + pu)
where G, is the Yosida approximation of G.

(4.1)

So, if we introduce G, (0)=G (f)— Piya, with

0 <w < pV Min (c;, ¢,) and GP the Yosida app-

. 5 o k @
roximation of G (G is a strictly monotone operator),
w

can write the state equation (3.2)-(3.3) as :

[ pV %‘;’_, <L\9+w9=0;weG‘: (6 +-pw) (4.2)
Y !

;28 —0)| =0 .

I 5y THE=0)| 5 (4.3)
‘ 8 (x, 0) = B (x).w (x, 0) = wo (¥) —

L ty — = b0 € G (60) (4.4)

~ Then we introduce the system, semi-discretized by an
implicit scheme :

e . T
lr PV(W A W,t[l)—f—%‘(enil_o”""):'{"

| (erad 6+1, grad ¢)+ J WL (§74+1—0,2+1) $d =0

L
vy € H1(2)

|
{ (4.5)
| -1 Sl ( gl . @ any
’ Wntl e G (0n+1)=G(6™+") pV" 1
| B=0,...,N'—Il (4.6)
00=0 (x), WO=tg—— 6 4.7
L o (¥) o——y b (4.7)
For the functional J, we take :
NT :
o~ 1 wtiy—1 12
Fl= Zl |0~} o g
n=1

4.2. Resolutionof the state equation

To solve in (W»+!, gnt1) the system (4.5)-(4.6), we
propose the following algorithm. At each step (n--1),
we do theiterations [(W™®, ") is given)] :

% (81, ¢) +(grad §;+", grad ¥)--.
+J‘; pntt (8_,""'5'1 "'3c"+l) ¢ dl — — PTV(WHH
— W) L) Y BEN@) (4.9)

n+1
Wit1=G (61 -+ p Wjh+?) (4.10)
w

Eqn. (4.10) is well-defined with the properties of C."

We have the result of convergence o
Proposition 1
for p>ro= ,,_:x m?n]l—,-(7‘,Wehave,
)
W?”-'ri =W+l in L2 (Q) weak_[y
0"t —-——g™+! in H* (Q) strongly
Demonstration

B W T
We know that G isa Lipschitzian operator; so we
il px
obtain :

Vot — ™ 12 1 e
| o= |L=‘~,.z|—|
+ p WhHl—g 1 —y W1 } ]

2
L2 (411
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op x)?

[]
|}
L ]
]
|
]
_e I
: . > x
i €
Fig. 3
< | W+l — W+l | |2 | i(gn—fl
S | J | | 22 ™ B
ngr!-l, W"-i—l_.an-i-l).{_ —;E } ! gntl
)l .
N e (4.11
From (4.9), we obtain :
12 .
Toms g | 3 | o

" 3 PV n4 n LB 1
—on+1 2 + 5 (WP H— WL, gt —g1) ¢

+I!h (gn+1—pgn+1)2 dI'=0 (4.12)

Then %]“/ (Wn+1, Wintl, gntl—gntl)

w

- | s NE
L - Mm( 1, —k-) l 1 gr+1—g;n+1 | OHL(Q)
and from (4.11)-(4.12) :
‘ l w1 _,‘+]1 IZ
| | W= )
2

< t = wn i-l.—PVjﬂ-H 1' L2 (Q)"!_

+k | |oti—gpr | |7 (4.13)
sl b | H1(2) '
u? [ oV

So with p> i IW"*'—WRHE 2 is a
B>k | | i | 2@
bounded decreasing sequence in R.

Then from (4.13) we deduce that :

— ()

| R
| =8 ()

TABLE 1
Conductibility A (T)

T(°C) Alcal/em/s/*C) T(C  Mcalfem/s/°C)
550 0,091 1100 0,068
600 0,086 1150 0,070
650 0,081 1200 0,071
700 0,076 1250 0,072
750 0,071 1300 0,073
800 0,068 1350 0,075
850 0,065 1400 0,076
900 0,064 1450 0,077
950 0,065 1500 0,078

1000 0,066 1550 0,079

1050 0,067 1600 0,080

and from (4.9), we conclude that
Wt tl———-=Wn i1 in L2 (2) weekly.
4.3. Determinationof the optimal control

In fact we compute the optimal control of a regulari-
zed problem, for which we can prove the existence of
optimality conditions. So a gradient method can be
used.

€
For this, we regularize G, by G, the graph of which
€ W
is given in Fig. 3, such that G is the sub-differential

w €
of a strictly convex, l.s.c., proper function ¢y .We
w

Ly
suppose that G ¢ C2 (R) and that

k (s) >0

e=>0

| 4 ()=t (¥) | <k ()| x| with {

Then, the regularized problem is the initial system in
which we have replaced W e Go (0) by We Gof(6). So
if we consider the optimal control problem associated
with this regularized state equation, we prove the
existence of an optimal control 7¢ and that the sequence
{he } converges 10 be solution of the initial problem.
But the main result is that we have the following
optimality conditions :

State equation

[V (Weni1— W, ) + (grad 0.+, grad ) -+

| Tk

’ , ni " | « e+ 1 niq w1
| —k(ee —0e", )-L{r he"+1 (fe"+1—fe+1)
| WdT' =0 vy eH (Q) (4.14)
<l ni1 ep nil nt1

l W =G (@ +pW )n=0,..NT—1(4.15
i € U w (" Gf .

| 0 =680 W =W € G (o) (4.16)
L € € 0 @
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Adjoint state equation

pV(» ep nil 741 ] n
(406" @ "), 4} (erad p, grad 9+

3
w n nt1
’.L—E(P""P !'/’);'
’ ntln n+1 —
. +J hopgdr=—214u —L) ,¢}
e € €
{ H (@)
: L Al (4.17)
p" __pru.l £ qn { s ‘uG‘c,,u (9n+l 53 }LW’H-”)
€ € € w € €
n=0,...., NT—I (4.18)
AT=0 4.19)
L
Optimality conditions
AY?!

L n—1 . n
D [ 0= 2 =B )r<0 v, Ul
n=1
(4.20)

The demonstration of this result is given in Saguez
(loc. cit). We prove the G-differentiability of @, and
We with respect to & and so, by the introduction of a
well chosen adjoint state, we obtain the condition
(4.20).

Remark 4.1

e
It is important to see that G is still a multivoque

w
operator. Then by this method we obtain optimality
conditions when m {(x, t) | 6 (x,#)=0}>0. So we
remark that this method is very general. .[]

With the above results, we can compute the optimal
control by a gradient method. For the case I (constraints
on the control), we use the following algorithm in-
troduced by Henry (1978). At each iteration, if we
denote by {A;} the last controland by {G;!} the asso-
ciated gradicnt, we obtain {/,/+1} by the iterations :

141, . BN B
h i Max [h , Min {h vh— p (G— J\Jt( }]
i im i M | I ¢ [

B M (0) [J{ —Pj (Z“f”:“d* D)J (4.21)

i

In fact, this algorithm corresponds to a gradient
method with projection. Its implementation is very
easy.

For the case 2 (constraint on the sate); we use a
penatly methed.

5. Numerical results
5.1. The data

We have solved the problem for a real continuous
casting. So the state equation is not exactly the same
than in the Chapter 3. In particular, the conductibility
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Fig. 5. Optimal control

Ais a function of the temperature (see Table 1). We
have considered the one-dimensional case. The state T
is solution of the system :

& __ dw [NT) grad T] =0 ; ve H(T) for

pV at
xelo, R[{;t€]0, 7T (5.1)
In the mould, we have the boundary condition :

AT). grad Tn=g  for x=0 (5.2)
For the spray system, we have :
ANT)grad T . n = —h(T—T, ) for x=0 (5.3)
Andfor x=R, thecondition is :
MT) grad T.a=0 (5.4)
The initial condition is always :
T(x, 0)=T, (x) ; v(x, 0)=vq(x) ¢ H(T,). (5.9)

With these equations we have the following data :

Structural data :

—Length of the mould 70 cm
—Spray-system :

zone 1 60 cm
zone 2 200 cm
zone 3 150 cm
zone 4 350 cm
zone 5 390 cm
zone 6 430 cm
zone 7 1250 cm

Total length of the installation 29 m.
R=12, 5 cm (which corresponds to a slab)

Physical Data
c1=0,2 cal/g/°C; ¢;=0,16 cal/g/°C
L=59,09 cal/g; Ts=1502 °C
Density of the steel p=7g/cm?
Initial temperature To=1537 *°C

The step of discretization is k=10 cm,

Ax=12,5/40 ¢m.
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TABLE 2
Flux in the mould

C. SAGUEZ

mould flux
(cm) (cal/cm?/s)
10 20,70
20 48,98
30 45.46
40 37,59
50 32,36
60 26,28
70 26,89

5.2. Numerical results
Case 1

f him < hi<hin
¥/
Lf:l

We take the data (Table 3)

; ¥=1,50 m/mn.

TABLE 3
zone hiim him a
1 0,015 0,020 0,40
2 0,010 0,016 0,5790
3 0,010 0,018 0,4902
4 0,0060 0,0157 0,8285
5 0,0030 0.0144 1,0492
6 0,0030 0,0066 0,9125
7 0,0025 0,025 0
We obtain the results :

Zone 1 2 3 4 5 6

hi 0,015 0,0128 0,010 0,0132  0,00439 0.(C483

(cal/cm® s° C)

Case 2
[ him < hi<hing

V=0,9m/mm

‘L a('le) QGI

with [8,=502°C

1Lh=16m
and we consider only the first six zones of the spray-
system. For a penalty coefficient e=2x1071, we
obtain the optimal control :

Zone 1 2 3 4 5 6

In each case, the computer time is approximately
equal to 2 mn on TBM 370-168.

The above method has been very efficient to solve the
studied problem. The next step of this work, is to use
this method to develop a system of regulation for a
continuous casting process. Also this method is general,
and can be used for many other multiphase systems.
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