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ABSTRACT. The catastrophe theory, to study the non-Inear differential system, as enunciated by
Thom is discussed. Seven elementary catastrophes according to the classifications made by earlier authors
are presented here. Increasing the order of non-linearity of the Duffing’s equations we have studied
tne equation 'x + 2{x + X -+ aX3-}-Bx° = Jcos Q¢
The catasirophe manifold in this case is butterfly catastrophe. The Duffing’s equation is also discussed
as a model to study the dynamics of brain used earlier by Zeeman. The differential equation for heart
beat and nerve impulse given by Zeeman are also discussed in this paper. The controversies regarding

3

catastrophe theory and its variety of applications are summarized.

1. Introduction

Mostly a mathematical model of physical or dyna-
mical system is represented by a set of state and
control variables satisfying a set of differential equa-
tions (Ames 1968). In the formulation of such a
mathematical model there is the underlying assump-
tion that the state of a given system changes smoothly
if the cause of its variation is small. It means a small
effect should result into a small variation in the vari-
ables determining the state of a structurally stable
system. But many systems particularly those repre-
sented by nonlinear differential equations may suddenly
change due to smooth alteration in the situation. Many
such problems have been analysed with varicty of
mathematical methods (Hale 1969). To analyse a
broad range of such phenomena in a coherent manner,
Thom (1975) has developed a mathematical technique
and called it catastrophe. This is now known as cata-
strophe theory (Poston and Stewart 1978) and should
be viewed as a new development within calculus.

Stability lies at the root of the modern mathematical
theories of dynamical systems and singularities, It is
important to note that small forces or alterations in
the situation, can change the state of a dynamical
system suddenly only when it is at a certain critical
state in the process of its evolution. So it is not only

important to determine the state of a dynamic system
but also to find the critical points in its history at
which a catastrophic change may occur due to small
changes in the controlled parameters.

Structural stability in certain sense can be treated
as catastrophe theory and so can be studied by mini-
mization of certain function usually called potential,

The theory of structural stability becomes involved
when several variables (state and control) are required
to determine the dynamics of the system. In such a
situation catastrophe theory can be effectively used
to determine the critical points and also behaviour of
the system at those points. Let us start with a family
of functions :

V:SXC-R
S being state variable manifold R* and C control vari-
able manifold R, say. The catastrophe marifold M is
the subset of R"% R" defined by
dV(x,c)
& =0

This is the set of all critical point of V' (x, ¢).

The catastrophe map y is the restriction to M on the
natural projection :

F:ROXR->R

*The paper was presented in the symposium “Indo-French School on recent advances in Computer Techniques in Meteorology, Big=
mechanics and applied systems "*held at LLT., New Delhi, February 1980.
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Fig. 1. Geometry of catastrophes

Fig. 2. Mechanical model of Zeeman catastrophe machine
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The singularity set S is the set of singular points
in M of x. The image x(S)in Cis called the
bifurcation set B, on which the number and nature of
the critical points change.

The catastrophe theory classifies the singularities
of V, that are structurally stable. It means that when
a system is subjected to arbitrary perturbation, un-
folding is topologically unchanged (Berry 1977).

Here the first seven catastrophe geometries are given.
These ideas are then used to analyse Duffing’s equation
after making certain modification in the nonlinear term.
Zeeman (1977) in one of his papers used Duffing’s
equation in brain modelling. Catastrophe theory is also
applied by Zeeman to heart beat and nerve impulses
(Zeeman 1973). These two papers are also discussed
in this note.

2. Seven elementary catastrophes

Let us consider a system whose behaviour can be
described by a finite number of state variablqs X1,
0 e B 2t and finite number of control variables
3 i Chusas oy SAYs Thom had shown that any such

system, by continuously changingits control variables
in the neighbourhood of a given state, can exhibit cata-
strophic jump behaviour. For a system of codimension
<4, there are seven possible catastrophes (Table 1).
Only these catastrophes are considered here. For higher
catastrophes one may refcr to the work of Poston
1978).

et al.

TABLE 1
Catastrophe Energy function, V
Fold (1/3)x* + Cy %
Cusp (I,M') x;‘ - (UZ) C] X|’ C. Xy
Swallowtail (1/5) 25 -+ (1/3) C\&® +
+(1/2) Cam® + Uy 2y
Butterfly (1/6) &% -+ (1,4) C, z* + (1/3) Oy 2 +
+ (1/2) Gy &® 4 Cyay
Elliptic
Umbilic oy — 3o, z? - Cyxy -
+Cy 2y + O (&)* + 7,°)
Hyperbolic
Umbilic o 20 O %y - Oy -+
4 Uy 2 7y
Parabolic
Umbilic @y Zy? 4 Xyt 4 Cywy o Cp g 4

+ Uy my® -+ Oy xs®

The general procedure to determine the geometry of
of these catastrophes is already given earlier. Here the
details of this procedure are given for cusp catastrophe.

Energy function ¥ for cusp catastrophe is

V(xy, Cry Co)=(1/4)x,*+(1/2) C1x2+-Coxp - (2.1)
The catastrophe manifold M is given by
dav
(Iltl = .\'|3 -1+ Cl—\‘l -}-Cz =10 (22)

Using (2.2) we can use the two variabies (x1, Cp) as
chart on M having general point

(xl, C1, Cz) = (Xl, C[,—"Cl.\’l—r«\’ﬁ) (23)

Now the Taylor expansion in the neighbourhood of
the state satisfying (2.2), is given as

Ve +x) = —(3M)xy—(1/2)Cp2-+ T x-+
+ B (e (2.4)
we can

Putting p=3x,2 /2--(1/2)Cy, g=xy. r=1/4,
now use the plane r=1/4 as chart on M, with

(C1, x1) = (2p—342, q)

expressing the old chart in terms of new one. The line
p=0 representing ¢ axis is transformed into fold curve
) = — 3x;2, in M. For p<0, V¥ has local maximium
and for p=0. it has local minimum. using this value
of Cyin (2.3) we get the fold line parameterized
by x; as ‘

(x1, =3x12, 2x3) = (x1, Cy, C3) (2.5)
Bifurcation set is the image of this in €. This gives
4C13 +-27C2 =0 (2.6)

This geometry is given in Fig. 1.
The cusp catastrophe can be easily demonstrated by

Zeeman catastrophe machine, This mechanical model is
presented here (Fig. 2).

In this model @ is the single state variable x; and
coordinates of the point Q, referred to O; the centre of
the disc as origin, are the control variables (C;, C3).
By moving the point Q; slowly on the plane containing
the disc, we observe that at certain state of motion the




CATASTROPHE THEORY

disc suddenly jumps from one equilibrium state to an-
other. Also by reversing the path of controls, the path
in the state space is not necessarily reversed (hystere-
sis). The slight differencesin the path may produce
large differences in state (divergence). In a similar
manner it is possible to investigate the geometry of
the other catastrophes mentioned here (Poston and
Stewart 1978).

3. Duffing’s equation
~ With damping and harmonic forcing Duffing equation
is

X42 L x-1x+tax3 = $ cos Q¢ (3.1)

This equation is studied by Holmes and Rand (1976)
for small values of { and ¢. Following their analysis
we can write

:T:y
_1;.:-—.\-—2 { y—ax3 - ¢ cos 0t (3.2)

Using the transformation :

u=Xx cos2t— (.%)sin!):; V=X Sinﬂt—(g)cos!)r
3.3)
we get

u=(px +-2y-+ax3—g¢ cosQt) SLRQEI
T (3.4)
;P:_(p.t—f—2€y+a.\'3—-¢' cos2t) : 0

where p=(1—£22). A solution of the form A cos(Q¢-- )
of (3.1) gives

u=A cosyy and v=4 sin (3.5)

For small values of (I, «, ¢, p) nearly harmonic
solutions of (3. 1) can be obtained and then correspond-
ing periodic solutions of (3.4) are nearly constant.
Under these conditions the averaged equations are :

; L ?1c_t 2. 0iv2Y v L
u=—3|p+3 (2-1v2) y ZCQH]

. 1 3a '
V= — Hﬁ[——p U=z (22 u +-2{ 2 v;.¢.J

Since (3.4) has constant solution we have

$2 = 420242 42 [ pt (ﬁf) Al’]z (3.6)
and sin ¢ = — (20 2 A/$)

This can be compared with
dv
e i O 6 =0 (3.7)

where, X1 = A2-4-(8p/9), C; = (16/27a2) (12 Q2 £2—5p2)
and Cy = —(16/729a3) [8p(p2 |-3622(2)+8 1ag2]

Fig. 3. Some typical cases of catastrophe manifold alongwith
the bifurcation set

The solution of Duffing’s with small damping and small
forcing function exhibits the characteristics of cusp
catastrophe.

~ Now by increasing the order of non-linearity to x*
in Duffings’ equation we have the equation:

X428 x+X+a X34-B X°=¢ cos (3.8)
Again using the transformation (3.3) and adopting the
earlier procedure, we get

= —gq| [p+7 (@) +Z—ﬁ(u2+v2)2]v+2c9uj

v= —2—11[—{p+i~“(u2 +2) +5gﬁ(u2+v2)2}u +2c9v+¢]
(3.9)
For constant solution this gives

3 5 2
§2a 4gzngz+Az[p+ ;;‘42 +§A*] (3.10)

and sing = — (20 2 A/4)

The Eqgn. (3.10) in amplitude 42 can be written
as ;

J(x) = X fapxtfasxdta2fapxta; =0 (3.11)
where, x= A2, a1=(124/58),/a,=(3642+-80pB)/2582
a,=(96p4/25B), a,=(64/2562)(p2-+40202),
as= —(6442/2582)

Putting x=(x;-}-h) in (3.11) we can write it as
S+ g Lo LB s (T ey

A

. _J1{h) ;
Now choosing 3= Sh--a; =0 and noting that

frh)

). 1,

5!
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Fig. 4. Projection of fold curves

Fig. 5. (a) Theoretical solution for propagated action potential
and conductances and (b) Analogues results for the
Hodgkin-Huxlay equations

we gel

dv o L .

fﬂ'l = X*Cax 3L Cx 2+ (3_\1. C,=0 ("l.?,)
where, C) = — (1/5) (2a,2—5a,),

C>= (1/25) (4a)3—15a1a5- 25a,),
Cy= —(1/125) (3a,"—15a,2a5-| TSaya,—125ua,),
Cq = (1/3125) (4a,*—25a3a;--125a,2a,—625%a; a4
--3125a;).
Eqn. (3.12) is the catastrophe manifold M of butterfly
catastrophe having energy function
V=(1/6)x1°-1-(1/4)C1x1*--(1/3)C2x13+(1/2)C3x42
+CaX1 (3.13)

Again we can obtain Taylor series and quadratic
cubic, quartic and quintic terms in it can be taken as
coordinates in space R'. Here the catastrophe manifold
maps into C in a fairly complicated manner. The
catastrophe manifold alongwith the bifurcation set is
shown here for some typical cases (Fig. 3).

4. Duffing’s equation and brain modelling

To link the gap between neurology and psychology
we need a mathematical approach to describe the medium
scale dynamics of brain. Most obvious tool for this
purpose according tc Zeeman (1977) is to use differen-
tial dynamical systems. He has used Duffing’s equation
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in an attempt to explain most obvious feature, the oscil-
latory nature of brain (Morrison 1979).

(i) Most sense organs convert amplitude into fre-
quency. When the frequency of firing reaches a
certain threshold, the brain will suddenly pay
attention to it. For this situation Duffiing soft
spring (a<0) oscillator provides a simple model.
Here a frequency threshold causes a sudden jump
in amplitude. The forcing term is the input from
the sense organ to the brain and the oscillator re-
presents the response of the brain.

(ii) Recall, mood and behavioural pattern all suggest
catastrophe models. Duffiing oscillator (hard-
spring a>0 as well as soft spring a<0) can ex-
plain some of these aspects of brain activity to some
degree of our satisfaction.

5. Differential equation for heatbeat and nerve impulse

The simple mathematical models to explain the dyna-
mics of heartbeat and nerve developed by Zeeman are
generalizations of the Van der Pol and Lienard equa-
tions (Zeeman 1973).

The diastole (relaxed state) is the stable equilibruim
state of the heart. The cortraction of heart into systole
is a global electrochemical wave emanating from a pace-
maker. This wave triggers off rapid contraction
of individual muscle fibre which then rapidly relaxes
again, The fibre thus obeys the jump return to equi-
librium state. This can be described by a system of ordi-
nary differential equations:

(5.1

and é. = X1—Xo (5.2)
where , x; is a constant greater than 4/3/3 and € is a
small positive constant.

The Eqns. (5.1) and (5.2) can be considered as a
model for the heartbeat, x; being the length of the
muscle fibre and €, being some form of electrochemical
control which can be measured in several ways.

In a more general manner the fast equation can be
chosen of the form :

€ .l:l = —(X|3—.\'|)—C|

< ’-: = = (X1 Cyy Cy) (5-3)

To satisfy the smooth return to equilibrium dynamic
quality displayed by heart, the simplest form for f can
be taken as

= x34Cx1 +C, (5.9
The catastrophe manifold M is given by :
xﬂ—{—C,le—(‘g =0 [5.5)

The fold curves in M are given by C;=—23x,2. Thus, we
have seen earlier that the fold curves when projected
into C gives

4C3-L271C2 =0 (5.6)

This forms a cusp. Outside the cusp M is single sheeted
and inside it M is 3-sheeted (Fig.4) M is smooth at O
and the cusp exists only in C. The upper and lower
sheets are attractors and the middlesheet is a repellor.
This lowest degree surface possesses all the required
properties. On the basis of Thom catastrophe theory
this surface is also unique. We are thus justified both

mathematically and biologically in choosing the cano-
nical fast equation as :

€ %, = —(X,3-+Cyx; +Co) (5.7

Now we have to consider the slow equations. The
cusp catastrophe has no slow equations normally. The
control variables C; and C, due to slow equations possess
a dynamic role. Now if x, is present in the slow equa-
tions, then it can be regarded as a form of feed back
on the cusp catastrophe. Based on Hodgkin-Huxley
data Zeeman has choosen the slow equations :

C; = —2C1—2x; and Cp = —Cy—1

There exists a dynamical system on R3 possessing
dynamic qualities displayed by heart muscle fibres and
nerve axons. This system can be written as

¢ X = —(%,3--C1%1 +C)
Cl = —'ZC] —-2x1

C, = —Ci—1 (5.8)

The equilibrium condition is given by x;= C}=C;=0.
This gives Ci=—I1, x;=1 and Cs=0 at equilibrium
state.

The Eqn. (5.8) can be applied to the nerve impulse by
identifying dynamical variables x;, Cy, Cs applicable
to this situation. Here C, can be considered as mem-
brane potential, —x; to be correlated with sodium con-
ductance (action) and C; to be identified with potas-
sium conductance which begins to change after the action
has finished and then it rises. It finally falls smoothly
during the smooth return (Fig. 5).

6. Conclusion

In conclusion it will be useful to point out the contro-
versy which has been raised regarding the catastrophe
theory and its variety of applications. Some argue
that catastrophe theory does not provide us with any
new information about the state of a dynamic system.
It uses obscurc terminology to arrive at obvious con-
clusions (Zahler & Sussman 1977 a). But there is also
a school of thought according to which catastrophe
provides us new opportunities to investigate effectively
complicated dynamical systems having large number of
state and control variables (Zahler & Sussman 1977b).

Biological, economic and social processes involve
large number of variables and here catastrophe theory
may prove to be quite useful, Kilmister (1979) in a
recent review of Zeeman’s work asserts that his work
does provide a very enlightening lead-in to many appli-
cations. It is true that the application of catastrophe
theory in physics has caused considerable disappoint-
ment amongst those who had unrealistic expectations.
Thus it is getting less fashionable. According to the
reviewer it is a pity since one gets out of it as much as
one puts in.

It is observed that highly optimum systems are quite
sensitive to small changes in their control variables and
thus resulting into a catastrophic collapse of the system
(Thompson & Hunt 1974)., Unmindful optimization of
a system may prove quite dangerous at some future
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Point after its design and use. Catastrophe theory is a
pointer to caution us and so should be used carefully
to study a dynamical system.

Particularly in our age there are several ecololgical
problems such as pollution of air and water. These
can become catastrophic at certain point in future for
mankind, The rate at which the atmosphere and rivers,
are being polluted, is increasing exponentially with time.
At certain stage in future, it may become more than the
rate at which the atmosphere and rivers can be kept
clean by the natural processes and so a catastrophic
situation may arise resulting into destruction of
mankind and other living organisms. Our technology
at the moment is too much dependent on oil. It is
well known that within few decades the world oil sources
may get exhausted al this ever-increasing rate of consump-
tions. This may result into a grinding halt of most of
the industries of the world and thereby unleash unpre-
cendented amount of discontentment and violence in
human society. Possibly here the solar energy if har-
nessed properly can help. The another problem is
then of deforestation.

Therefore, it is necessary to investigate all those
processes which are likely to change catastrophically
by the use of new mathematical tool, viz., catastrophe
theory. Catastrophe theory which has now become a
part of calculus helps us, to anaylse the critical state of
various dynamical systems,

1t is well known that the development of calculus by
Newton and Leibniz, few hundred years ago, has
given tremendous boost to our understanding of dyna-
mical systems. No doubt the seed of calculus was sown
when Zeno stated his famous paradoxes. But it took
approximately 2000 years to biing his ideas to fruition,
in the form of calculus. Due to peculiarity of our age
we should pay full attention to catastrophe theoly to
analyse, the dynamical systems as the reaction time for
us is much less as comparad to our forefathers. Cata-
strophe theory, 1 am sure will give us the opportunity
to peep into our scientific and technological activity more
closely and thus enable us to avoid such situations which
may prove dangerous to mankind in near future.
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