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Canonical correlation analysis (CAA) model for long-range forecasts of
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ABSTRACT. Using the canonical correlation analysis (CCA) approach, a forecast model for long range forecasts of
monsoon (June-September) rainfall of 27 meteorological sub-divisions over India was developed. A set of 12 parameters,
which have significant correlation with Indian monsoon rainfall, was used as predictors. The model was developed with the
data of the period 1958-1994 and by retaining three significant canonical modes. The model showed useful predictive skill in
respect of meteorological sub-divisions over central parts of India and NW India with low errors and high skill scores for
categorical forecasts. The model showed no predictive skill in respect of meteorological subdivision over south peninsula,
Onissa. west Bengal and Bihar. The CCA model has been also found to perform better than another statistical model developed
using the 12 same predictors. The CCA model also showed moderate skill in forecasting excess and deficient rainfall categories

of sub-divisional monsoon rainfall during the extreme years,
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1. Introduction

Agriculture, power generation and industrial produc-
tion substantially depend upon monsoon rainfall during
June-September, which contributes about 70% of the annual
rainfall over most parts of the country. In view of the critical
influence of large inter-annual variability of rainfall on
agricultural and industrial production, seasonal prediction
of monsoon rainfall becomes very important for policy-
making efforts. India was the first country to start a system-
atic development of long range forecast techniques for the
prediction of seasonal monsoon rainfall over the country.
India Meteorological Department (IMD) now operates four
models namely Parametric and Power Regression models
(Gowariker et al. 1991), Dynamic Stochastic Transfer
model (Thapliyal 1982) and Multiple Regression model
(Thapliyal 1986). For the review of operational models of
India Meteorological Department (IMD), Thapliyal and

Kulshrestha (1992) may be referred. For general review of
long range forecasts for monsoon rainfall over India, Has-
tenrath (1995) and Krishnakumar er al (1995) also may be
referred.

The studies on prediction of seasonal rainfall over India
are mainly focused on the country as one unit. However, it
is a known fact that monsoon rainfall in India exhibits large
spatial and temporal variability. On temporal scale, mon-
soon rainfall exhibits two important quasi-periodic oscilla-
tions; 10-20 day oscillation [(Krishnamurti and Ardanuy
(1980)] and 30-50 day oscillation [(Krishnamurti and
Subramanyam (1982)]. Similarly, monsoon rainfall exhibits
large spatial variability. Sub- divisions in NW India exhibits
large inter-annual variability whereas subdivisions over NE
India more or less experience normal rainfall every year.
Moreover rainfall of sub-divisions in the NE parts of the
country is poorly or negatively correlated with the rest of the
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TABLE 1
List of predictors used in the study

S.No. Predictor Reference |
1. East Coast Temp. March (ECT) Gowarikar ef al. (1991)

2 NW India Pressure Anomaly May (NWPA) Krishnakumar et al. (1995)
3 NW India Min. Temp. Anomaly May (NWTA) Krishnakumar er al. (1995)
4. Northern Hemispheric Temperature Verma er al. (1985)

5. Bombay MSL Pressure Tendency (MAM-DJF) (BPT) Parthsarathy er al. (1991)
6. SOI Tendency (MAM-DJF) SOI Krishnakumar et al. (1995)
7. Darwin Pressure Tendency (Apr-Jan) DPT Shukla and Mooley (1987)
8. Nino 3 88T Tendency (MAM-DIJF) NI3T Krishnakumar et al. (1995)
9. De Bilt Mean Temp. (DBT) January Dugam et al. (1993)

10. N.H. Pressure Anomaly (NHPA) ) Gowarikar er al. (1991)

1. NW India and Central India (MAM) Krishnakumar er al. (1995)
12. 10 hPa Zonal wind Balboa, January (ZW10) Bhalme er al. (1987)

country (Parthasarathy 1984). In the best monsoon years
with excess rainfall there would be always some areas with
deficient rainfall. Similarly in the worst monsoon years with
large deficient rainfall there would be some areas with
excess rainfall. Thus it is important to have long range
forecasts of monsoon rainfall on smaller spatial scales as the
forecast of monsoon rainfall for India as a whole may not
provide information about large rainfall variability that oc-
curs on smaller spatial scales.

We have therefore developed a model for long range
forecasts of sub-divisional monsoon rainfall over India
based on Canonical Correlation Analysis (CCA) approach.
This approach originally proposed by Hotelling (1936) has
been used by Barnett and Preisendorfer (1987) for monthly
and seasonal forecasts of US surface air temperatures, Gra-
ham er al (1987) and Barnston and Ropelewski (1992) for
prediction of ENSO episodes. Recently, Prasad and Singh
(1996) reported results on CCA model for long-range fore-
casts of monsoon rainfall. They have developed the model
by using 8 parameters as predictors for 29 Met. sub- divi-
sions and have obtained encouraging results. Even though
we have used similar technique, we have obtained compara-
tively better results, probably due to the selection of better
predictors and following better stringent rules in carrying
out the CCA procedures. Moreover, while developing the
present model, we have given more priority for the opera-
tional requirements and constraints.

2. Brief review of canonical correlation analysis (CCA)

Canonical Correlation Analysis (CCA) is at the top of
the hierarchy of regression modelling approach. It is a
multi-variate statistical technique that calculates linear com-
binations of a set of predictors that maximizes relationships
in a least square error sense to similarly calculated linear
combinations of set of predictands. One such combination
of predictors of predictands constitute one canonical mode.
CCA is a useful procedure for determining the dominant
linear modes of co-variability between two data sets. This
technique is more complex than multiple lincar regression
or discriminate analysis which treats only one predicated at

a time. CCA uses eigen values and eigen vectors in a
specialized way, such that the structure of the covariance
between predictor and predictant variable under the con-
straint of maximization of cross data set correlation ex-
plained with each successive mode.

2.1. Method of calculations

The methods of calculations in the CCA are given
below. Let ¥Y(P,N) and Z(Q,N) be the predictor and predic-
tand data sets. P and Q are the numbers of predictors and
predictands respectively and P need not be equal to Q. N is
the number of years of data.The predictor and predictand
data sets are detrended and standardized. The predictor and
predictand data sets are then separately orthogonalised and
truncated using EOF analysis. This analysis provides the
eigen values (k and A) and temporal (o, B) and spatial
amplitudes (e and f) for each fields respectively. The number
of modes to be retained is determined by objective criterion.
The resultant predictor and predicated principal component
time series ‘are normalized and then analyzed in the main
portion of the CCA procedure. The details of the main CCA
procedure are given below.

(a)'Calculate the cross correlation matrix (C) between
the predictor (o) and predictand () time amplitudes as
tfollows:

C=Tra'pry (1)

where T is diagonal matrix of inverse square roots of
predictand EOF eigen values and Tk is diagonal matrix of
inverse square roots of predictor EOF eigen values.

(b) Calculate C'=CC’,t means transpose of the matrix.

(c) Obtain the eigen structure of ol by obtaining eigen
values and eigen vectors R. Arrange by decreasing values of
U (the canonical correlations) and scale each R to unit length.

(d) Calculate the temporal and spatial amplitudes of the
predictor side of the canonical modes (U and g) respectively.

U=aT iR (2)
g=e¢el R
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(e) Calculate the scaling matrix

S=U'p (3)

(f) The regression models relating the predictor canoni-
cal structure to the individual predictands are given by

y=¢gSf )

For hindcast estimates of % the following equation is
used

A
Z=USf"' ®

For more details, Barnett and Presiendorfer (1987),
Graham er al. (1987), Barnston and Ropelewski (1992),
Bretherton et al. (1992) and Prasad and Singh (1996) may
be referred.

3. Predictor and predictand data sets

We have used a set of 12 parameters as the predictor
set. The list of parameters is given in Table 1. These are
regional as well as global parameters which have statistical
and physical relationships with Indian monsoon rainfall.
There are six temperature, five pressure and one upper air
parameters as the predictors. These parameters are selected
based on their stable and significant correlations with mon-
soon rainfall and are widely used in the long-range forecast
models. These parameters are also selected on the basis of
availability on real time basis by the end 6f May for opera-
tional purposes. One of the notable exception in the predic-
tor data set is the 500 hPa ridge position (Banerjee et al.
1978) which is showing poor correlation with monsoon
rainfall during the last 10 years. However, it is to be men-
tioned that this predictor data set need not be the best optimal
predictor data set for this problem. Identification of better
predictors should be an ongoing research process.

The monsoon seasonal (June to September) rainfall of
27 meteorological sub-divisions of India constitute the pre-
dictand data set. The sub-divisions considered in the model
development are shown in Fig.l. We have excluded the
sub-divisions in the hilly regions and the islands from the
analysis. Prasad and Singh (1996) considered two more
sub-divisions (North Assam and South Assam) which are
more like hilly regions where the rainfall variability is very
small. We have therefore excluded from our analysis.

The data for predictor data set were collected from
Monthly Climatic records of the World being published by
NOAA and IMD weather records. Nino-3 index data was
obtained from the Climate Analysis Centre, NCEP, USA.
The rainfall for the monsoon season (June-September) of 27
sub-divisions were taken from the IMD records. We have
considered the period 1958-1994 for the development and
testing of the model.

L 1 ' T O

7

Fig.1. The 27 meteorological sub-divisions considered for the model
development

4. Estimation of skill of the model

We have used the cross validation technique (Michael-
sen 1987) to estimate the skill of forecasts. This technique
is followed to control artificial skill inflation due to overfit-
ting of random variability on the relatively short period of
data (1958-94). The cross validation is done as follows.

Each of the n + 1 years is held out in turn and CCA is
used to develop a prediction model from the remaining n
years, For each case, a new year being held out the entire
sequence of data, pre-processing and pre-orthogonalization
are performed anew using the remaining years, The predic-
tor data for the withheld year are then projected on to the
predictor CCA loading patterns and predictand values are
generated and verified against the observed data. We have
used two skill scores to assess the performance of the model.

The first forecast skill is the root mean square of errors
(RMSE) in standardized unit RMSE is calculated as

rmsg N-Z=2)°

(n-1)

Here, Z and Z refer to the observed and cross-validated
estimates of a predictand in standardized units respectively
and the brackets refer to the expected value of the enclosed
expression.

Another skill score is also calculated based on the
model performance for categorical predictions. To calculate
this skill score SF, each predictand is assigned values of 1,
0 or -1 according to whether the value is above normal
(>19%) , normal (+ 19%) or below normal (< 19 %). The
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Fig.2. The RMSE (in standardized unit) and Skill score of categorical forecasts of the CCA model

TABLE 2
Details of Empirical Orthogonal Function (EOF)
analysis of Predictands and Predictors

Eigen Mode Cumulative Variance

(%)

Eigen value

(a) Predictand
9.926 36.7
4,096 51.9
2.129 59.8
1.930 66.9
1.461 723
1.195 76.8
0.988 80.4
0.762 83.2

G =) N bW N -

0.012

(b) Predictor
4.055
1.665
1.480
1.372
1.010

12 0.120 -100.0

cross-validated estimates of the predictand are transformed
in the same way. For each year and each sub-division these
classifications are compared and the number of correct

forecasts are determined. The skill score SF is calculated as’

p={E=C)
(T-C)

where, E is the number of correct forecasts, C is the
number of correct forecasts based on ‘climatology’ and T is
the total number of forecasts. These skill scores do not
heavily penalize large errors, as do correlations and RMSE
and give an idea of model performance for categorical
predictions.

5. Canonical correlation analysis

Before beginning the CCA, the predictor and predic-
tand data are detrended and then standardized so that all
variables posses temporal stationarity thus ensuring that
equally good predictors have equal opportunity to govern in
the model regardless of their original variance. The predictor
and predictand data sets are pre-orthogonalized with sepa-
rate EOF analysis. The results of the EOF analysis are given
in Table 2. The predictor and predictand data sets were
truncated with five and six modes which together account
about 78 % and 76 % variance respectively. The truncation
has been done by retaining only the modes whose eigen
value is more than 1.0. After the CCA, three canonical
modes are retained. The first three canonical correlation
values are 0.72, 0.51 and 0.46 respectively.

6. Forecast model and results

The model performance has been found to vary with the
number of predictor and predictand modes retained as well
as the canonical modes retained for the subsequent regres-
sion analysis. However, we have found that retaining 5 and
6 modes respectively (by the objectively criterion) for the
predictor and predictand data sets gave us the best results.
The results were also improved by retaining all three canoni-
cal modes'in the regression equations than by including one
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Fig.3. Actual and cross validated estimates of rainfall departures in
respect of (a) West Rajasthan, (b) East Madhya Pradesh and (c)
Marathawada

or two canonical modes. In this case, the third canonical
modes is also found to be significantly to contributing in the
predictive skill.

The RMSE for 27 meteorological sub-divisions for the
period 1958-1994 are shown in Fig.2. The lowest RMSE of
0.69 is obtained for east M.P. Predictive skill in respect of
south Peninsula and eastern parts of the country (Bihar,
West Bengal and Orissa) is relatively low as errors are larger
and close to 1.0. Root mean square errors across the central
parts of the country extending up to NW India are relatively
smaller. Prasad and Singh (1996) have obtained RMSE
exceeding 1.0 for most of the sub-divisions during the
independent period of 1969-1984,

The skill scores SF of the categorical forecasts for the
period 1958-1994 using the cross validation technique for
27 meteorological sub-divisions are also shown in Fig.2.
The highest skill of 0.58 is obtained for plains of west U.P.

The skill scores in respect of southern parts of peninsula and
eastern parts of India are generally close to zero implying
very low predictive skill. Over central part of the country
the skill score of Madhya Maharashtra is small (0.15). These
results are comparatively better than the results obtained by
Prasad and Singh (1996). While with the present model 15
out of 27 meteorological (55%) sub-divisions had skill score
of >0.3 for categorical forecasts, the model developed by
Prasad and Singh (1996) had 11 out 29 meteorological
sub-divisions ( 38%) with skill score >0.3.

The actual and predicted rainfall departures for the
period 1958-1994 for three sub-divisions (west Rajasthan,
east M.P. and Marathwada) are shown in Fig.3. The year-
to-year variation of rainfall over west Rajasthan is quite
large. The model was however able to forecast the year-to-
year variation quiet reasonably with some exceptions. The
two notable exceptions are for 1976 and 1988. In 1976, the
model forecast was -14% but the actual was more than 60%.
Similarly in 1988, the model forecast was 49% but the
realized was close to zero. The model was also successful in
forecasting large rainfall variations that occurred in 1970’s.
The forecasts for east M.P. are comparatively better with
some exceptions of 1983, 1985 and 1988. The performance
for Marathawada also was encouraging with some excep-
tions of 1990 and 1992.

The performance of the CCA model in forecasting
sub-divisional rainfall is compared with yet another statisti-
cal model developed for sub-divisional monsoon rainfall.
For that we have used the Principal Components Regression
Analysis (Mc Cuen 1985). In this scheme, we have used the
same 12 predictors which are then subjected to Principal
Components Analysis (PCA). The resultant principal com-
ponents which are mutually orthogonal are subjected to
conventional regression analysis with sub-divisional rain-
fall of each sub-division separately thus developing 27
separate regression equations. This approach has the advan-
tage in the sense that the multi collinearity of the predictor
data set is avoided, because the principal components are
mutually orthogonal. At the same time, the original variance
explained by the predictors is also retained. This approach
has been adopted by Singh and Pai (1996) for long range-
forecasts of monsoon rainfall using some oceanic parame-
ters. The skill scores of principal components model for
sub-divisional monsoon rainfall are shown in Fig.4. In most
of the sub-divisions, the CCA model performed much better
than the PCA model except over southern peninsula and
castern parts, where even otherwise the predictive skill is
very low. The large difference in the predictive skill is
obtained in respect of west M.P., in which the PCA model
could not predict the categories accurately. Higher skill
score for the PCA model was obtained for coastal Kar-
nataka, south interior Karnataka and Tamil Nadu. However,
overall the CCA model performed much better especially
over NW India in both forecasting the quantum and catego-
ries of monsoon rainfall.




MAUSAM, 50, 2 (April 1999)

TABLE 3
Verification of CCA model forecasts for 1995 monsoon rainfall

Sub division

©v
o

Actual (%)

_ Forecast (%)

Gangetic W.B.
Orissa

B. Plateau

B. Plains

East U.P.

Plains of west U.P.
Haryana, Chandigarh, Delhi
Punjab

Himachal Pradesh
West Rajasthan
East Rajasthan
West M.P.

East M.P,

Gujarat Region
Saurastra & Kutch
Konkan and Goa
Madhya Maharashtra
Marathawada
Vidharbha

Coastal A P.
Telengana
Rayalaseema
Tamilnadu

Coastal Karnataka
N.I. Kamnataka

S.1. Karnataka
Kerala

S PC RN s W

ok o IO B e e e o e e e e
qo\{z&uﬁ—@cmqa\uaun_'—

20
-17
10
-2
-9
4
83
44
17
45
18

-10

-28

3
3
2

TABLE 4
Average success rate (Percentage) of CCA model forecasts of sub-divisional monsoon rainfall during
deficient and excess years

Excess

Normal Deficient

Deficient Years

Excess
Normal
Deficient

66 34
89 11
3 69

Excess Years

Excess
Normal
Deficient

16 0
85 0
66 34

The performance of the model was examined by run-
ning the model for 1995 also with the data of 1995, The
forecasts and realized rainfall departures are given in Ta-
ble 3. In 1995, five meteorological sub-divisions (Gangetic
West Bengal, Haryana and Delhi, Punjab, west Rajasthan
and Rayalasema) received excess rainfall. The model could
indicate the excess rainfall in respect of three meteorological

sub-divisions (Haryana, Punjab and west Rajasthan). Out of

two meteorological sub-divisions with deficient rainfall, the
model prediction for Gujarat region, was - 14% indicating

below normal. The average absolute error for 27 meteoro-
logical sub-divisions in 1995 was 17%.

Further, the skill of the CCA model in predicting the
sub-divisional rainfall of extreme years also was examined.
In this case, cross validation technique was applied for
sub-divisional forecasts of seven deficient years (1965,
1966, 1972, 1974, 1979, 1982, 1987) and four excess years
(1964, 1975, 1983 and 1988). The results are shown in
Table 4. The results for two recent extreme years, 1987
(Deficient year) and 1988 (Excess year) are also shown in
Fig.5.
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Fig.5, The actual and predicted sub-divisional rainfall departures for 1987 (deficient year) and 1988 (excess year)
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In the deficient years, average success rate of predicting
deficient rainfall is 69% and average success rate of pre-
dicting normal is 88%. During the excess years. average
success rate of predicting excess rainfall is 84% and success
rate of predicting normal rainfall is 85%. The success rate
of the model in predicting deficient rainfall categories dur-
ing the excess years is only 34%.

7. Conclusions

The CCA model developed thus shown useful predic-
tive skill for the meteorological sub-divisions across the
central parts of the country and NW India. The predictive
skills for southern peninsula and eastern parts (Bihar, West
Bengal anid Orissa) are relatively very poor and not useful
for operational purposes. The CCA model performed com-
paratively better than the PCA model probably because the
CCA technique can extract the dominant modes of co-vari-
ability between the predictor and predictand data sets and
use them in prediction. However, since the CCA technique
considers only linear modes, constraints in better predictive
skill are expected. The performance can however be im-
proved by identifying better predictors and including in the
analysis. Diagnostics of monsoon variability and identifica-
tion of better predictor data set is the most important agenda
in the long range forecast research.
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