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AN ARMA MODEL FOR LONG-RANGE FORE-
CASTING OF RAINFALL OVER COIMBATORE

1. Agriculture is rightly described as a gambling with
monsoon. In this game, human efforts to understand the
nature and to adopt his cultivation practices to it is a legend.
The problem of uncertainty of weather, especially rainfall
and man's efforts to understand the process of change and
to adopt himself to it are particularly important in dry land
agriculture. The importance of information on amount of
rainfall sequences and lengths of wet and dry spells for crop
planning and to carry out agricultural practices has been
discussed by Pandarinath (1991). Due to larger variation in
the weather system, a variety of rainfall patterns are ob-
served which are erratic and quite undependable.

Several methods have been tried to model rainfall
amounts. They can be broadly classified as distribution
models, regression models and progression models. The
distribution models are not useful for forecasting future
rainfall. Agricultural management practices could be modi-
fied towards increased and sustainable productivity only
when future rainfall can be predicted well in advance.
Hence, regression and progression models have been tried
to model rainfall amounts.

The variations in Indian monsoon rainfall are due to
some natural causes. This line of thinking paved the way for
investigating the causes for the variability of monsoon rain-
fall in India. EI-Nino and Southern Oscillation have been
identified in recent years as promising signals of monsoon
variability.

Many authors worked on these lines. The important
works were by Thapliyal (1982, 1990, 1993), Gowarikar et
al. (1989, 1991) and Thapliyal and Kulshrestha (1992).

The regression models used so far for long range fore-
casting of Indian monsoon rainfall are general models to
represent the entire country and for the entire South-West
monsoon season (June-September). Such general models

will not be applicable for smaller regions. They are also no
valid for shorter time periods such as weeks.

Moreover, they involve numerous climatic parameters
for which data collection is not easy and economical. A great
deal of efforts and resources are necessary to collect relevant
data. Hence, there is a need to find out a model that is useful
for long range forecasting of rainfall for smaller regions and
shorter periods and which utilizes relatively easily available
data. Application of time series technique may be a solution
for the above problems

The auto regression moving average (ARMA) models
are powerful tools to forecast time series. The application of
ARMA schemes to time series problems was popularised by
Box and Jenkins (1970). Their approach is commonly
known as Box-Jenkins methodology.

No much work has been done on application of time
series models to forecast rainfall. Rangaswamy and Kulan-
daivelu (1980) used pure auto regressive (AR) model to
forecast annual rainfall for Coimbatore, Tamil Nadu, India.
Thapliyal (1982, 1991, 1993) has shown that the lead indi-
cator ARIMA models can be used for forecasting rainfall.
Borah and Bora (1995) used seasonal ARIMA model to
predict monthly rainfall around Guwahati, Assam, India.

Although a variety of tools were attempted for [orecast-
ing rainfall, there is no universally acceptable and reliable
tool. This study is an attempt in that direction.

2. Rainfall data for Coimbatore city in Tamil Nadu
State, India have been used for this study since daily,
weekly, seasonal and annual rainfall data are available for
91 years continuously from 1907-97.

The commonly used criterion to choose the most reli-
able forecast model is the minimum mean square error
(MSE). The selected model might fit very well the data from
which the unknown parameters are estimated. However, the
agreement between the forecasts and future data that are not
used for estimation need not be as good. Hence, comparison
of forecasts with actual future observations can be additional
useful tool for model evaluation and selection (Box and
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TABLE 1
Rainfall forecast for South west and North east monsoon- Coimbatore 1982-97
(Rainfall in mm)

South west monsoon North east monsoon

Forecast | Forecast 2 Forecast |
89 155 3 191
110 162 254
220 183 436

294

179
Mean square error 569 3015

Root mean square error 75.4 549

Forecast 1 : Without shrinkage constant, Forecast 2: With shrinkage constant

Tiao, 1975). In practical situation one can not expect many
future observations. Therefore, in a series the initial part may
be used for model building and the remaining part for
forecast evaluation and comparison.

In the present study, 75 years data were used for model
construction. The minimum required sample size suggested
in the time series literature is 50. Thus, with the data of first
75 years starting from 1907 the models were constructed and
the one- step-ahead forecast was made for the year 1982.
Similarly, taking the data of previous 75 years for model
construction the forecasts were made for the year 1983-97.

Since the crops are usually grown during South-
West(SW) and North-East(NE) monsoon seasons, the mod-
cls were constructed for these series only.

3. The ARMA model of order p and g is represented as

Xi=@iXi1+@2 X024

+‘~'PpX.r-p+Cr'elf’:'l-

where, X’s are deviations of actual values from the
mean 1, 1 is the time period, ¢'s are the auto regression
paramelters, e’s are the errors and 6’s are the moving average
parameters. The parameters are estimated using Box-
Jenkins methodology.

In the usual ARMA models the parameters are con-
stants. Makridakis and Wheelwright (1978) have developed
a modelling approach with time-varying parameters. Their
approach is known as adaptive filtering. It consists of a
heuristic recursive algorithm that revises the parameter cs-
timates as each new observation becomes available. The
heuristic optimization procedure does not require any a
priori knowledge about the time series in question. The
paramelers of the ARMA model are estimated through a
non-linear least squares approach by using the method of
steepest descent. The formula for adapting the parameters
of the auto regressive (AR) model according to the method
of steepest descent is

¢i;’ = q’jr] + 2 k € * X;,"' . 1'21.2....,[)
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Fig. 1. Rainfall forecast for southwest monsoon Coimbatore (1982-97). Forecast 1 - without the index of shrinkage, Forecast 2 - with the index of shrinkage

where, ¢ are the new parameters

¢jr.1 are the old parameters

k is the learning constant

X,.;» are standardized values at time t-i
g+ is the standardized error term at time f
er=X;- )},

The learning constant k determines the speed of adop-
tion. It will be in the range of O<k<1/p where p is the order
of the AR model. The standardization is done by dividing

r
X;and ¢; values by [ £ X,z_,] I/2 . The standardization coef-
i:l
ficient is used so that the X; and e; values fall between 0
and 1.

Their procedure starts with the determination of order
of the model and initial estimates of the parameters as in the
other methods. The appropriate formula for adapting the
parameters is used till all the N observations are used. One
complete pass through the series Xp.1, Xpi2, s Xy is called
an iteration. Usually several iterations are required to get
optimum parameters. If the relative change in the MSE of
one-step ahead forecasts from one iteration to the next is

smaller than a predetermined constant, the iterations are
stopped. The estimate of parameters from the last iteration
is used in the forecast of future observations.

According to Makridakis and Wheelwright, the sim-
plicity, economy and self-adapting procedure of the adap-
tive filtering arc the three main advantages of it. There are
no real practical problems in applying the method as long as
the learning constant k is set as stated already. The optimi-
zation will converge when k is properly specified even if the
series is non-stationary or the wrong order of the model is
specified.

The adaptive filtering has been questioned on both
theoretical and empirical grounds by several authors (Ekern.
1976; Golder and Settle, 1976; Montgomery and Contreras,
1977). A major criticism of the adaptive filtering technique
has been the fact that it does not make explicit reference to
a model for the parameters changes and that it does not
discuss the assumptions that are necessary to yield the
revision values in equation (1). Makridakis and Wheel-
wright (1978) admit that the method of adaptive filtering
needs a better theoretical basis. Since the paramelers are not
fixed, it is difficult to use the classical statistical concepts
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Fig. 2. Rainfall forecast for northeast monsoon - Coimbatore 1982-97. Forecast | - without the index of shrinkage, Forecast 2 - with the index of shrinkage

used in the time series analysis.

4. The auto correlations for the seasonal and annual
rainfall data of Coimbatore reveal that the rainfall series is
random. In such situations the usual Box-Jenkins method-
ology which depends on auto correlation functions may not
be used to fit the time series model. Instead, the Makridakis
- Wheelwright procedure of adaptive filtering may be tried.

Following the stepwise autoregression procedure de-
scribed by Newbold and Granger (1974) and employing
adaptive filtering technique with N =75 and k= 0.197 it was
found that AR(50) model fitted well to the SW and NE
monsoon rainfall data of Coimbatore. The MSE approached
zero as the number of iterations increased to 25. However,
the MSE for the post sample forecasts increased as the
number of interations increased. It was observed that with
two iterations the MSE of the post sample forecasts was
minimum in almost all the cases.

Using AR (50) models and adapting adaptive filtering
with two interations the forecasts were made for SW as well
as NE monsoon seasons for 16 years from 1982 to 1997. The

results are presented in Table 1.

In both SW and NE monsoon rainfall series the models
fitted well in the fitting phase. However, they did not fore-
cast well in the forecasting phase which can be observed
from the results in Table 1. Chatfield (1975) observed that
with large number of parameters close to the number of
observations the model may fit the series well, but, the
forecasts may be highly erratic with such models.

Similar problem arises in predictions using usual re-
gression models. According to Copas (1983) the fit of a
regression predictor to new data is nearly always worse than
its fit to the original data. To overcome this problem he
suggested the use of shrinkage constant which will give a
uniformly lower prediction MSE than least squares. In the
present study the shrinkage constant was used to reduce the
MSE of the forecast using AR model. The index of shrink-
age is given by

C1=2%
1+ (P - 4)8

where 82 =6 / np VB
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v=n'X"x

X = (n-p) % p matrix of observed rainfall
=X, X2.X3, . X,
X2, X3, Xy, .. Xpa1
X3, X4 X5, .. Xpi2
Xn-p’ xn-(p—i )’Xn-(p-z)» . A
B = vector of parameters
p = number of parameters
n = number of observations

The results are given in Table 1. In case of SW monsoon
rainfall the MSE for the post sample forecasts was 5693.
When shrinkage constant was used, the MSE reduced to
3015. Similarly in case of NE monsoon rainfall the forecast
MSE was 33875 without using shrinkage constant while it
was 16649 using shrinkage constant.

For Coimbatore the long term average rainfall is 174
mm for the SW monsoon and 321 mm for the NE monsoon.
The variances for the SW and NE monsoon rainfall are 82.5
and 139.9 respectively. The root mean square error for the
sample forecasts was 43.0 in case of SW monsoon and 80
in case of NE monsoon, which are far less than the standard
deviations of the actual observations.

Taking the square root of MSE for sample forecasts as
allowable error, the closeness of the forecast may be judged.
On this basis the forecast for SW monsoon may be termed
as satisfactory if it is 43 mm above or below the actual
rainfall. Similarly, if the forecast for NE monsoon is 80 mm
above or below the observed rainfall it may be taken as
satisfactory. Based on this criterion it was observed that the
forecasts for SW monsoon were close to the actual rainfall
in 10 out of 16 years when shrinkage constant was used. But
they were close only in 6 out of 16 years when the shrinkage
constant was not used. In case of NE monsoon the forecasts
were close to the actual rainfall in 8 out of 16 years, with or
without using shrinkage constant.

Both in terms of MSE and closeness of forecasts, the
usage of shrinkage constant improves the forecasting ability
of the model. Further improvements in forecast may be
possible with some other modifications similar to shrinkage
constant. The validity of the usefulness of shrinkage con-
stant in forecasting models has to be checked by applying it
to rainfall data of more number of places.
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