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ABSTRACT. Roundoff error propagations in the computation of Legendre polynomial with cos 8 and @ as
the basic variables arc discussed.  An iterative scheme with @ as the basic variable, for computing all the Zeros of
Legendre polynomial based on the quadratic convergent Newton-Raphson method is presented and their accuracy
is determined by using different appropriate invariant relations,

1. Introduction One of the main purposes of this study is to identify a
suitable procedure for minimising the errors. Another
In majority of the present spectral models of the at- important problem associated with the use of Newton-
mosphere (Bourke 1972, 741 ; Machenhauer et al. Raphson iterative method for finding the zeros is the
1972 and others), the transform mecthod as develop- converging of many initial approximations of the zeros
ed independently by Orszag (1970) and Eliassen ef al. to a single value in the course of iteration. One
(1970) is used for obtaining the spectral representation way fo avoid this problem is to choose the initial approxi-
of non-linear terms. In the models where spherical mations quite close to the exact values. Other possible
harmonics are chosen for spectral representations of the solution of this problem is to use the alternative method
variables, the transform method involves the Legendre (Aberth 1973) specially developed for this purpose.
transforms of non-lincar terms along the meri- In this paper we have chosen first alternative and same
dional direction. The meridional integration can be is discussed.
numerically performed exactly by using a Gauss-
Legendre quadrature formula of appropriate order. 2. Choosing the basic variable

An idea of the high order of Gauss-Legendre quad-
rature formula required in the models may be casily
understood from the following example. A high reso-
lution spectral model with the rhomboidal truncation at
wave number 30, generally preferred for extended range 7
prediction and other experiments, uses the Gauss- : .

Legendre quadrature formula of order 76, which is P,(cos §) — (S 4, _sj (cOS gy* M

. - —

The normalised Legendre polynomial of degree n, i.e.,
P.(cos 8), can be expressed in the form :

quite high. =

The abscissas of Gauss-Legendre quadrature formulae h
are the zeros of Legendre polynomial. Among the few where,
problems that arise in' the numerical computations, the T .
most serious one is the presence of large errors in the O e n #H_ 1) Jg::_- I
computed values of the polynomial and its derivatives. n! 3
This is due to the utilisation of polynomial espansions,
which limits strongly the accuracy of the zeros. an—=1,

(la)

*Paper was prcsenﬁéd in the symposium “Indo-French School on recent advances in Computer Techniques in Meteorology, Biomechanics
and Applied Systems” held at LLT., New Delhi, 4-13 February 1980,
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TABLE 1

J.
Valiigs of ©x and Z | an_2j | for Legéndre

J=1
polynomials of various degrees #

Degree of the

polynomial Ch z | an—2; |
" -

f=1

30 8.60  10% 2,60 10
35 } 2,75 10w 6.70 o7
40 R.80 . [On 1.72% 108
45 2,82 1010 4.40 - i0°
50 9.01 x 101 P.13 100
55 2,88 101 2.89 lot
60 9,22, 1017 7.4 104
68 2.95..10v .90 . 10°
70 9.44 -« |0 4.87..10%
75 3.02 <1022 1.25 < 10*
80 Q.66 10% 3,20 10¢
85 3.09. 10% 8.20 10*
90 9.89 . 10% 2.10 107
95 316 10 5.3 107
100 1.01 . 10% 1.38 10

n(i—I1). .. (n—2j-+1)

o= 1Y g3 @@=z (D
for j=1,2.......J
and @ is the co-latitude, J = i,: for even n and

n—I

J= 2

for odd n. In order to save computation time the nor-
malisation constant C, and the expansion coefficients
i , @y _j arc computed from the follow-
ing recursion relations, which can be easily derived from
Eqns. (la) and (Ib) respectively as

i %l
Cr= 2'\/1 2 (—.-,I-k_)' Crp fofrk=1:2: . 5o # (28)

and
(n—2j+2) (n—2j-+1)

L I T T TS S
rOE‘ j:’ .2..} (lb]
It follows from Eqn. 2(a) that C,(p_,=— 2>
| for k=1, ....,n; this condition leads to the amplifi-

cation of roundoff error in course of its propagation
during the computation of C,. Further more, C,, ~ 2!
which is quite large for a sufficiently large value of .
This situation is also favourable for subsequent large

amplification of the errors of the expansion coefficients,

thus contributing to the gross error in the computaion
of P,(cos 8).

It can be seen from the recursion relation (2b) that the
rdtio

I Uy 2§ '
| dn—ﬂi—! |

is 4 monotonic decreasing function of f for fixed # and
hdving values greater thar unity for the first few values
of j. Furthermore, majortity amorng the expansion
coefficients are having magnitude far greater than unity,
This situation is also favourable for the amplification
of the rourndofl errors in course of their propagation,
thHus, contributing to the net computation error of
Legendre polynomials. It is expected that the maximum
upper limit to the net comiputation error of P, due to the
presence of inlierent roundoff error e is proportional

o :
J
o ) 1
The values of C,, and 2 J @yal]
|

J
| |
Che ; | dy2j |-
L'l 4
f=0 J=0

for 30, 35, .. .. 100 are given in Table 1. In the actual
computation the érror is noticed to be near to the factor
C',e than the product

J
| . :
€ C‘nB [ @y il This behaviour of the error
L |
i=0

is due to the following reasons, C, is dominating
factor compared to the second factor as seen from the
table. The contribution from the second factor appeared
as the weighted sum of roundoff errors, which is most
likely to be much less than its maximum upper limit

I

. |
€ S '“n- 2j
| |

j=0

In brief, we can say that the polynomial expansion of
P, (cos 6) is not suitable for the computations because
of poor roundoff error characteristic for higher n. The
number of significant digits in the computed value de-
creases rather fast with the increase of #. For this reason
we preferred (o use the expression for Legendre poly-
nomial and its first derivative, which involves multi-
ples of 8, instead of the powers of cos 6. They are :

J
Pu{CUS 9) =2 Dnz bu—-‘:j COS(Hk ‘2]‘0 (3)
j=0
dP X
and dﬂm = -D,’Z b' s sin (n—2j)8 (4)
i
where the normalisation constant D, is given by
. 1.3 Qu) P
n! 2n—1 3 (5a)
the coefficients b,, b, _.,...... b _,j are given as

gl I.3..(2j—l,)uw—]),,(,,__.i“,_l)
n—2j

J' @n—D 2n—3) . " 2n—2jF1)
for f=0,1,....J (3b)
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b', i and D, can be expressed in terms of b, _,;
and D, respectively as

; n -2 |
o VIS NS

D'y=n D,
where J'= J—1 for even n and J'=J for odd n.

In cases when n is even, the last term of Eqn. (4) is to be
multiplied by a factor §. Belousov (1962) has studied
the roundoff error characteristics of Eqns. (3) and (4)
and has proposed algorithms for calculating the norma-
lisation constant D, and the expansion coefficients
b,, b, 5 .., b, ,j based on the recursion relations.
His algorithms fmve the property of damping the
propagation of roundoff error and they are briefly
discussed below for an easy comparison with the algo-
rithms based on Eqn. (1).

The recursion relations for- computing D, and the

coefficients can be easily obtained from Eqns. (5a) and
(5b) respectively as follows :

TWRTEO N
D;,tﬂ/tg(-ﬂ:)‘ Dz fork=1;. 22588 (6a)

and

_a—2j+1 .
bn_j= [I — mm :lbn_gj{ o for j=1,2,..,J (6b)

The following inequalities are easily followed from Eqns.
(6a) and (6b).

- — 2
D&_x <1 fOl' ’L——- 1, Lyis sia 1y i,

and
bn_.zj

i =] fory=1, 2, .5

It is implied by these inequalities that the roundoff errors
in the computation of D, and the coefficients b,, bu .,
cevvy by_oj are damped in course of their propaga-
tions. More or less the same error characteristics are
observed for D', and the coefficients &', _,,..., b o),
involved in computation of dP,/dg from Egn. (4).

A comparison in respect of the computational error
characteristics between the two representations of Le-
gendre polynomial immediately lead to the conclusions
that the second is far superior to the first.- It seems
natural to work with the ¢ as the basic variable for com-
putations of P, and dP,/dg by using Egns. (3) and (4)
respectively.

3. Newton-Raphson’s method and the initial approximations

We have chosen in this study the Newton-Raphson
iterative method for finding simultaneously all the
zeros of Legendre polynomial of high degree. This me-
thod is quadratic in convergence and is easily adoptable
to the computers. In some cases many different initial
approximations of the zeros converge to a single value,
when the initial approximations are not close enough.
In general, convergence to a multiple zero is slower com-

pared to a simple zero. It may be mentioned here that all
zeros of P, aré simple and real and their close initial -
approximations to the exact values can be casily ob-

tained.

Let 8,, 8, ... , 0, be the initial approximations to
the zeros of Px and 8,--A0f,,...., 0,1 /0, are the
modified approximations after the end of first iteration.
In the Newton-Raphson method A6 is given by :

. dP
Abi= —Pycos &)/ ‘m)ﬁ (cos @)

where [=1,2, ... n

The zeros lie in the interval 0 < 8 < = and are sym-
metric around the line @==/2; further, for odd n
one of the zeros lies on this line. Only the zeros, J in
number, that lie in the half interval 0 < 8 < #/2, need

to be computed explicitly the remaining zeros are ob-

tained 'on symmetric consideration.

To start Newton-Raphson iteration process for com-
puting simultaneously all the zeros of Legendre poly-
nomial, good initial approximations to their exact
values are required. For this purpose many formulae
are available in the literature but we preferred the follow-
ing formula due to Szego (1936):

#T4 0 4
0= 2[ = -|*—,;!'_—l] ()
T U ST

This approximation provides the zeros accurate up
to three decimal places. The more accurate approxi-
mations than (8) are available but they require more-
computation time. In actual computation, no problem
was encountered in using Eqn. (8) as the initial appro-
ximations.

where,

For terminating the iteration process, an upper limit
to the convergence error is prescribed. This value de- -
pends upon the computer accuracy, for computer with
48 bits word representation we selected the value 1010,
1t is noticed that not more than 4 iterations are required
for the convergence of the iterative procedure,

4. Accuracy of computation

In this section we will discuss a procedure for deter-

‘mining the accuracy of the computed zeros of P,

i.e., the minimum number of decimal places upto which
each of the computed values is correct. The procedure
consists of using different suitable invariant relations,
such that, their numerical evaluation involves the zeros,
then determining upto what accuracy these invariant
relations are satisfied. This procedure is expected to
provide an upper bound of possiblé error in the comput-
ed zeros. The computation error of zero is composed of
two components — one isdue to the machine inherent
roundofl error and the other is due to the truncation
error of the iterative method. It is easily followed from
the previous discussion on the propagation character
istic of rourdoff error of the numerical algorithms
based on Eqn. (3) that the truncation error component
is much larger than the roundoff error component,
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One of the invariant relations considered here involves
the Gaussian weight given by
S sin®
L1
Grm 2D o
[nP._ (cost)]?
where /=1, 2, .... J and Gy is the Gausian weight.
It is obvious from Eqn. (9) that the Gaussian weights
are positive and symmetric around 6=7/2. Further,
they satisfy the following invariant condition

"

ZG:'—:?_ (10)

The other invariant relations are provided by the foll-
owing orthonormal properties of Legendre polynomial,

1
J P Ppdy =1 (1
—1
and
1
[I’.,,,] Pusdx=10. for m, # n, (12)

&
where x=cos 8.

Integrals (11) and (12) can be evaluated exactly by using
a Gauss-Legendre quadrature formula of sufficient
order; the n-points formula is exact for the polynomial
of degree 2n—1 and less (Kopal 1955, Krylove 1962).
Integrand in Eqn. (I11) is a polynomial of degree 2mr,
while that in Eqn. (12) it is of degree (m;-m.).

For determing the lower limit of accuracy of the n
computed zeros, the Gauss-Legendre quadrature for-
mula of order #n, whose abscissas are these zeros, is
used for evaluating integrals (11) and (12). In integral
(11), m is assigned a single value. whereas in integral
{12) three different combinations of m, and m, are
chosen. Values of m, m, and m, are so chosen as to
satisfy the conditions 2m < (2n—1) and (my-+my)
<(2n—1). Thus, for each n, the five invariant relations
are used for the purpose mentioned above and this
number is considered to be sufficient.

Computation error in each numerical evaluation of the
invariant relation is the weighted sum of the errors in
zeros as can be easily concluded from Egns. (10)-(12).
We have calculated all the zeros of Legendre polynomial
of degree varying from 1 to 100. In all, nearly 500 invariant
relations are checked for finding the minimum degree
of accuracy of the computed zeros. A sample of 500
errors is large enough to provide an upper bound of
the error in zeros which is equal to the maximum ab-
solute error of the sample. It is concluded from the result
so obtained that the computed zeros are atleast correct
to first 8 decimal places or in other words almost only

two decimal places are lost in the process of compu-
tation.

Finally, we determined the exact number of decimal
places to which the zeros are correct by repeating the
complete calculations in double-precision arithmetic.
The zeros obtained by using double-precision compu-
tation are truncated to get the correct zeros to the deci-
mal places involved in single-precisioi arithmetic.
These values are compared against the values obtained
from single-precision computation. It is found that the
values are having 9 decimal place accuracy.

5. Conclusion

The numerical algorithms based on the representation
of Legendre polynomial and its derivative in terms of
cos 8, have been analysed for the roundoff error
propagation in course of their computations. Results
of this analysis have been compared with those obtained
with the representation based on @ as the basic variable.
It has been concluded, on the basis of the comparison,
that only with the use of numerical algorithms based on
# as the basic variable, it is possible to compute the
zeros sufficiently accurate, particularly in the cases of
high degree polynomials.

It has been shown that the Newton-Raphson iterative
method can be easily adopted for the representation
in terms of #. It has been found that only one decimal
place was lost in the computation of the zeros of P,
for n < 100.
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