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ABSTRACT. A computational scheme for the solution of nonlinear parabolic partial differential equations
is developed. The proposed scheme, which is second order accurate in lime, is based upon a combined

approach of quasi-linearization an

d the Galerkin method wherein a basis consisting of the cubic B-splines has

beenused. Anillusirative example is solved to test the scheme. The numerical resulisare in good agreement with

the available results.
1. Introduction

The prediction of meteorological parameters by the
solution of hydrodynamic equations governing atmos-
pheric motions is known as numerical weather pre-
diction. Numerical weather prediction involves, more
often than not, the solution of nonlinear parabolic
partial differential equations. Since the analytic solutions
for these equations are almost never available a resort
to the numerical methods seems to be a must. Of the
numerical methods, the difficulties associated with the
finite difference methods are well known. The finite
element methods, although somewhat more difficult to
program for a computer than the finite difference
methods, have certain inherent advantages. Among
the finite element methods, the Galerkin methods possess
a very desirable feature, namely, the form of the solu-
tion. In most of the caises, the solution is a smooth
function which is a piecewise polynomial. This has
led several research workers to the development
of algorithms, for the solution of nonlinear parabolic
equations, which make use of the Galerkin method.
The most prominent among them is Douglasand Dupont
(1970, 1973). It is known that the Galerkin method
with a basis of B-splines yields results of higher order
accuracy. Davies (1970) has obtained the numerical
solutions of the primitive equations in one dimension
using the Galerkin method with a basis of B-splines,
for a number of boundary conditions. He has also
obtained a solution of the nonlinear Burgers' equation
(1978). Murphy (1975) has presented cubic spline Gale-
rkins approximations to parabolic systems with coupled
nonlinear boundary conditions. In this paper, a scheme
is proposed for solving nonlinear parabolic equations.
The proposed scheme is based upon a combined appro-

ach of quasilinearization (Bellman and Kaluba 1965)
and the Galerkin method wherein a basis consisting of
the cubic B-splines has been used.

2. Formulation of the problem

Consider the nonlinear parabolic equation:

Up—tpy = F (X, 1, 11, uz), Xe Dy 1>0 (N

with the initial condition,

u(x,0)=u,(x), xeD )
and the boundary conditions

u(x, =g(x, 1), xeagD, >0 3)
where, for simplicity, let us assume that

D=J0, a], aeR, a=>C.

We quasilinearize Eqn. (1) to obtain the following
sequence of linear partial differential equations :

ntl LES
U —Uepx =F (\ & ¥ u”r) ' (u.+l u')

n L nil LR n n
X F (\ tu, u) ; (Ir - u )F‘., (\ hu,u )
x > xls

n xz/ z
xeD, =0, 0=0, 1, 2 35 : s (4)

where a subscript denotes partial differentiation and u» +1
denotes the (n-1) st member of the sequence {wk}k=o.
The initial and boundary conditions corresponding to
Eqns. (2) and (3) are :
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Figs. | & 2. Solution of test example at t=0.02

w1 (x, 0)=uo(x), xe D (5)
and
urtl(x, t)=g(x, 1), xeg D, <0 (6)
respectively. Eqn. (4) can be written in the form :

n u nil N |
TR E R T S ljf (\‘_. fote ,u,u s U )

x £
xeD, t=0; »=0, 1, 2, 3;. vuus (7

Thus Egns. (1)-(3) have been transformed into
Egns. (7), (5) and (6). We now use the Galerkin me-
thod as proposed by Douglas and Dupont (1970). The
weak form of Eqn. (7)is

atl nt | noowll
<X LvV>+<u V= =<fu.u ) v
t x x
veH, (D); t> 0, n=0, 1,2, 3, ..;., (8)
where,

<p,qg>=§p ) q)dx
D

£

W 7 ntl nll
f(uw,u

1 n
J=f(xtnw,w.u u )
: x x

1 % - -
and H, (D) is the closure of C,(D), the set of infinitely
differentiable functions with compact support in D
with respect to the norm defined by :

| ol

The initial condition corresponding to Eqn. (5) is given
by :

9 9 19
2 [ ] ]‘ AT
= i o 1] —

| L‘(f;) ) ox

1
I (D) I

:I_-«,'IJ.

<um+1 (L, 0), v>=<ilp. v>>,
1
veH, (D).n=—0,1,2,3,.... 9)

We approximate u®+' by approximating w"+!—
un+1—g. Notethat wn+1 satisfies:

<L, v 4wt Ly, v =< f(wn, whtY), v

veHY(D), t>0, n=0.1,2,3.... (10)

<wrtl (x, 0), v>=<w,, v>, ve H (D)
n=0, 1,2, 3,..

(11)

where.

~

n
S wriN= f(x, t,w 4 g. wn, Ta, WhH1-J-g;

dor
Wyt t1 "Lg.a‘)_ S (X, 1)
of

W, (X)=1u, (X)—-g (x, 0).

We now choose a sct {¥/;} of functions from H,'(D)
which are linearly independent. Let M denotes the
subspace of H,'(D) spanned by this set. We approximate
wetl by Woa
Let

"o nil

W = ..’: i

(1) Vi) (12)

where ;" 11(1) are unknown coeflicient functions to be
determined such that W» ! satisfies :
%4l
< W,

-1

V> + <Wz Hg V>

— 0 w41
=<f(W.W )V>,
Ve M,1=>0.n=0,1,2,3, .... (13)
<WRIL(,0), V> = <w,, V=, VeM,n=0,1,2,3,. .(14)

We denote by W;™ 1 the numerical approximation
for W at the jth time level. Thus

n-tl n-1 n |1
Wi =Za @)VE=Z a V; (15)
joi i S
_We now use the Crank-Nicolson-Galerkin appro-
ximation in Eqn. (13) to obtain:
o ”/ju 1 “’J—l - 7_ wj'ﬂ H ‘—%—W_,- - ;
<Z 2ol _Etﬁ._,, V>4 < ~ 772 z —-)I tge, V>
7 (w". Wit + Wi ) 5 Visss
. j 2 u
VeM,n=0,1,2,3.:.. j=1,2,3, .,.. (16)

where W;_; denotes the value of W at the (j—I)st
time level. Eqn. (14) is replaced by :

ﬂ-ii

<W, V>=< M_., V>

(17)
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TABLE 1

Values of the analytical and numerical solution at a few mesh
points at 7=1.0 with g(x, )=u(x, )

Analytical solution Numerical solution

u(x, t)

.0986118
1631498
.2237749
.2809334
.3350000
.3862934

0986118
.1631498
.2237749
2809334
. 3350000
.3862934

A

Eqns . (16 and (17) are basic equations for the solution
of the given problem.

3. Description of the basis functions

We have used the cubic B-splines  B; for Vi
the basis functions. A cubic spline function is a piece-
wise cubic- polynomial that is twice continuously di-
fferentiable. The cubic B-splines are defined as follows
(Prenter 1975) Divide the interval [0, a] at N
equidistant points x;, 0 <i < N, such that :

D=Xy <Xy <Xp << oow KXy <Xy=4a

Let x;—x; ,=h, | <i < N. Introduce four more points
X_, X_4, Xx+1 and Xy o such that :

X g <X_y<Xgand Xyt+3> Xyi1> Xy
Then the cubic B-splines B; are defined by :

(x—i_o), if Xe [Xi_ss Xia]
|35 =i g) - 3hCr )P

: | =3 x—x,_q)% if xe[x;_y, X;]
B; (x)= h-a-i I 303Xy —X) 430 (g —X)2—

‘ —'—3(.\‘,‘ 1 —x)3, if xe [_\‘,'. Xit1)

‘l (Xip2—X)% if Ye[Xypq, Xite]
L 0, otherwise i=0,1,2, . . . N
Since the functions B,, By, By_ and By are nonzero

at the boundaries, we have used {B>, Bj, ..., By_.,} as
the set of basis functions.

4. Numerical method

The solution U; at the jth time level is obtained from
Egns. (16) and (17) by an iterative procedure described
below : -

Step 1: Set Wy equal to Wj_,, the value of W at the
(j—1)st time level,

Step 2 : Substitute for W;', from Eqn. (15) and for
W;j_1, W in Eqn. (16). This yields a linear
algebraic” equation in o’s for each value of
Ve M.

Assign a set of different values for V' e M
to obtain a set of linear algebraic equations in
a’s.

Solve this set to obtain q” s.

Substitute back for
obtain Wj'.

Use #;2, obtained above, and Wj_, to obtain
W2 in the same manner as described above
(Step 2 to Step 5).

Repeat the above procedure to obtainW;3, W',

.., until the difference between the values
of two successive members of the sequence
{Wki}t>, becomes less than a given tolerance
E(usually of the order of 1075). Let a; be the
smallest integer such that

a’s in Eqn. (15) to

| Winet? — W™ | <E

Then the value W of W at the jth time level is ob-

, tained by setting W; equal to Wjrk 1.

Step 8 : Finally,
Uy= Wy g

gives the solution Uj at the jth times level.

5. Numerical results

To test the proposed scheme we have solved

W=lgete e 2% O<x<<l, >0 (18)

together with the initial condition :

u(x,0)=In(x4+2), 0 <x<1 (19)
and the boundary conditions :

w0, 1) =1In (1 +2), 1=0 (20)
u(l, )= In(r4+3), >0 @1y

The analytical solution of this problem is gi
(Hopkins and Wait 1978 ) : d o g

u(x, t) = In (x+142) (22)

_To solve problem (18-21), we have consider:
different boundary functions g. In the first insfaﬁgc,tvuvfg
have chosen g(x, t)=g(x, 1)=u(x,r). The numerical
solution obtained in this case is virtually in distinguish-
able from the analytical solution on any reasonable
scale. Table | presents the values of the numerical

solution and the analytical solution at a
points at t=1.0. few mesh

When g (x, ) was changed to gy(x, 1) =In (a2

_ 1) = t

it was observed thap the accurazcy of the E‘esn-zi;tj‘zi)s:
slightly hampered. Figs. 1 and 2 show the analytical and
numerical solutions at 1=0.02 for different values of
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N, where (N—3) is the number of basis functions and
/t, the time step.

It is found that the proposed scheme is fast and
accurate. It can be used for solving other nonlinear
parabolic equations.
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