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On the numerical simulation of large
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ABSTRACT. The purpose of the present study is to find out that within the sigma coordinate system, any differ-
ence exists in two formulations of the equations referred to as model *A’ based on the conservation of total energy
and lower order moments of potential enthalpy and model B based on the conservation of total energy and per-
turbation energy around a given arbitrary stratification. Both the models yielded forecasts close to each other
which leads to conclude that thus lack of sensitivity of the model formulation may be due to lack of precision in the

data and, therefore, nceds performing of similar cXperiments on a wide set of FGGE data sets,

1. Introduction

Numerical modelling of large-scale atmospheric motion
for purposes of weather prediction, general circulation
studies or climate simulation, involves a number of
purely technical problems : space discretisation, for
instance, can be performed using either finite differen-
ces or finite elements or else spectral techniques, the
details of which can be worked out in many ways;
discretisation in time can be done using various explicit,
split or semi-implicit schemes with different properties;
and so on. However, before going to the technical
stage, one must consider a number of questions which
turn out to be more fundamental from the methodologi-
cal standpoint. Let us leave aside at first the parame-
terisation problems and concentrate for a while on the
set of known properties of the atmosphere as a (friction-
less, adiabatic) fluid. The main question to be asked
this respect is the following : can all these properties
be preserved in numerical modelling ? and if not, what
choice should we then make ? (or rather : is there
in some sense, what we may call a best choice ?)
Historically, general circulation models have evolved
in a more or less contingent way, following mainly easy

. paths plus a few random inventions : and no one knows
for sure that kind of qualitative improvement may be
obtained from radically different approaches.

One exgmple pf property usually violated in the current
general circulation models is particle-wise conservation

of Ertel’s potential absolute vorticity for adiabatic (not
necessarily hydrostatic) motion. This property, which
from an Eulerian point of veiw means invariance of all
moments of this quantity on any isentropic surface,
seems to bear quite strong dynamical implications
nevertheless, it has been overlooked for a long time in
numerical modelling, and even now general circulation
models are not designed in such a way as to take ad-
vantage of it, except within very. crude barotropic
approximations (Arakawa 1966 ; Sadourny 1975a).
In fact, a satisfactory solution of this problem requires the
use of entropy as a vertical coordinate (as performed
originally in Eliassen 1962 ; Eliassen and Raustein 1968)
which in turn, requires a satisfactory solution of the
moving boundary problem. On the contrary the present
generation models mostly use normalised pressure (sig-
ma) as vertical coordinate, which is the casiest way to
treat the lower boundary condition by reducing it to a
coordinate surface. Indeed, no one knows how much
this general agreement on the easiest method has really
impeded progress in modelling the flow dynamics:
possibly the time has come for systematic investigations
in this direction.

The purpose of the present work is much more modest.
We choose to stand within the sigma coordinate system,
and simply compare two formulations of the equations
referred to as model A and model B as different from
cach other as we could think of, in terms of conserva-
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tion properties. (Model A is based on the conservation
- of total energy and lower order moments of potential
enthalpy and Model B is based on the conservation of
total energy and perturbation energy around a given
arbitrary stratification). We thereby hope to estimate to
what extent the dynamics can be improved without
going to some other coordinate system ; or in other
words, get some kind of measure of the variability of
the dynamics within the sigma system.

2. Model A : Conservation of total energy and lower order mo-
ments of potential enthalpy

We choose to write the thermodynamic equation
directly as a flux form of potential enthalpy ; for energetic
consistency, the pressure gradient term in the equation
of motion has to be formulated as the product of poten-
tial enthalpy by the gradient of Exner’s function. The
corresponding approximation for the primitive equations
read :

2.1
(2.2)
(2.3)

84+ (018w +(/NxV+Z | =0
856 +[015z 7 =0
8. (1014 V) + 85((61aw)+ % (852P) = 0

(2.4)

5.v+ sz(gTP +w):0

respectively : the horizontal equation of motion, the
hydrostatic equation, the thermodynamic equation and
the continuity equation. The symbols used are defined
as follows :

¢ geopotential
w = P* Exner’s function

0= c,T)m potential enthalpy
i Coriolis parameter

N ' vertical unit vector

V= (u,v) horizontal velocity ve-

ctor
P , local pressure
v=(u,v)=28zFPV

w=8zPo

horizontal mass flux

vertical mass HAux

afet Eulerian time deriva-
’ tive

D|Dt Lagrangian time de-

rivative
Averaging operators

horizontal  finite di-
flferencing operator

[
8= (8r, &)

by vertical  finite di-
fferencing operator

The finite difference approximation of the two last
terms in (2.1)—, referred to as a curly bracket—being
of no particular importance in the present context,
will not be specified. We choose to consider a hori-
zontal grid of the C-type [Fig. 1(a)], the vertical dis-
position of variables being displayed in Fig. 1(b). For
simplicity, the discrete averaging and differencing
operators will be given minimal extent, involving two
neighbours in x, y or ¢ only. For the thermodynamic
equation, we first choose [ ]4 in such a way that the
(discrete) space integrals of # and an arbitrary function
A (#) are conserved by the flux form : .

‘ . d
[41.4:8(q374—A)/8(7J§) (2.5)

(Arakawa er al. 1974). The problem is then to design
thz othar averaging oparators [ ] so that total energy
will be conserved.

Multiplying (2.1) by v, (2.3) by =, adding and
horizontally integrating yield

DV

' Z{v 8-+ 7 [0law) -+ £ 05,P) + v D0} = 0

xr, Y

provided the horizontal average [ ] is equal to [ ]y,
Integrating by parts in the vertical and in the horizontal
and using(2.2), (2.4), one gets

Z {¢8z (g_tp + w) + wlzd + (% (082 P) -1

z,y,2

bv) -
+ v D_t_} = (

again provided [ ] =1  Jain the vertical (Here we
have used the boundary condition w=0 at top and
bottom). Again integrating by parts the first term and
using (2.2) yields

opP, oP 2
z {¢s —a}i +[0]4 32;11'5!‘ +r ’5}(982-?) +

.0,z
DV}

Dt =0 (2.6)

o
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Fig. 1 (b). Four-day predictions for 500 mb geopotential fleld of 8 November 1969 using model B, compared to the correspo-

nding GFDL analysis from GARP Basic Data Set (C). It is based on the
turbation energy around a given arbitrary stratification.

conservation of total energy and per-
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where the suffix § refers to value at the ground. On the
other hand, stationarity of the total energy reads

oPs | ps pom ., 8 . A
Z{‘S“ﬁ" 5P L7 4w L 08,2) v ) 0

(2.7)

Equating (2.6) to (2.7), we get a sufficient condition for
formal energy conservation :

z { (6], 37 —(:_'—f-’—osng—f-} = {j (2.8)

o

to be satisfied at every horizontal grid point, which is in
general not true. To yield a condition of practical
useability, (2 8) must be transformed into a relation
independent of the particular values taken by variables 8,
mand P. In order te get rid of ¢, [#]4. must be chosen as
the arithmetic average, which means that integrals of ¢
and @ are conserved by the flux form of the thermodyna-
mic equation. In that case [ ]4is symmetric, and
(2.8) only requires

SNE,I: —-th'P* =0 2.9

¢

at every grid point in the vertical; bar mcans arithmetic
average. If we further assume Py == 0 (or ¢ = P/Py),
and pressure Exner’s function can be eliminated : de-
noting o by s at § or = locations (sce Fig. 1b), the final
condition for energy conservation reads

z

ogdzs§—=unrydzao (2.10)
In a L-layer model, the layer depths ;¢ being given.
(2.10) can be interpreted as a set of equations which
determine the corresponding “optimum’ levels s for
Jlocation of the thermodynamic variables § and = :
(2.10) is but a particular finite difference analogue of the
natural differential relation between s and o.

The set of equations (2.10) is easily solved for s :
a typical distribution obtained in the case of 11 layers
(1975 version of the LMD GC M, referred here as model
A), is shown in Table 1. If the distribution of layer depths
is not smooth enough, the 3-point centred difference
appearing in the left-hand side of (2.10) may excite
2-grid interval noise : yvielding values of s alternatively
above and below midpoint valueslr\'r‘v{!)'f;‘lhe solution
is especially sensitive to the distribution of layers
depths near the upper boundary where s and g diverge
markedly from each other. However, if enough care is
taken in the design of layer depths the solutions come
out quite close to midpoint values, except very near the

top.

3, Model B : Conservation of total energy and perturbation energy
around a given arbitrary stratification

The fact that the atmosphere is a stratified medium
is in itself an important constraint which appears
somewhat distorted by the use of the o coordinate
system, especially in the vicinity of high mountains.
It is not natural to consider differencing operators on
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artificial surfaces like the o-surfaces, instead usr-
faces which are naturally meaningful for the fluid
motion in the interior of the domain, i.e., isobaric or
isentropic surfaces, over which the mean stratification
is uniform. One consequence of this choice is the pos-
sible occurrence of large truncation errors near the
mountains (Kurihara 1968; Sundqvist 1975, 1976;
see also Sundqvist 1979). A related aspect of the prob-
lem is the fact that arbitrary resting states, in which all
the thermodynamic variables are functions of height
only, are not resting states for the model and generate
spurious oscillations; in this way the concept of avail-
able potential energy looks somewhat ill-defined. Fur-
ther, one can expect these spurious oscillations to be
primarily of gravitational type; then, the inability of
the discrete o-coordinate model to recognize the cli-
matic stratification as a resting state means conti-
nuous generation of spurious gravity waves from moun-
tains, asking for the addition of some artificial energy
damping process. One, therefore, expects possible dis-
tortions, not only in forecasting problems, but also in
climate simulations.

It looks obvious at first that only one stratification
can be a resting state for a discrete o-coordinate model.
If the model is built in such a way that one such stratifi-
cation (says S) exists, truncation errors in the vicinity
of high mountains will remain small for atmospheric
states which depart not too much from S.  Looking
a little deeper into the problem, one has to analyse
the beshaviour of the truncated model around S in
order to study the structure of its normal modes. Normal
modes up to now have been studied for the separable
problem without mountains, where the basic state of
rest can be considered a function of o as well as of
pressure or temperature. If finite amplitude mountains
are given, the linearised primitive equations around
a stratification S can be written :

grad ¢" —sH’' gradm + fN x V - v 0.
(3.1)
0p'/dgo —SH' gm [ 30 =0 (3.2)
Dm[Dt |- 3H' |31 = 0. (3.3)
— oP’ '
divy *{'E(E—- 1-w )/80-_—'-0 (3.4|

where primes refer to perturbation quantities.
notations used here are the following

H =¢,T
g=y(P) - geopotential of basic stratification
h=—dg/d(x LnP) Enthalpy of basic stratification
m=hig

New

enthaply

Montgomery potential basic stra-
tification

s= ~(dm'? (xLnP)"1 Inverse static stability basic stra-
tification

Since the system is linear, all stratification functions
are consicered independent of time; they are functions
of x, », o only through the basic pressure function
p(x, ¥, @), obtained by inversion of the basic geopotential
function g(P). This basic pressure is naturally used
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Fig. 1{c). 500 mb gzopotential ficld of 8 Novenber 1969 corresponding to GFDL. analvsis from GARP Basic Data Set (C)
VSIS asic Data Se
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instead of P in the definition of the perturbation mass
fluxes v’ and w'. The perturbation energy — a quadratic
invariant of the system — reads

¢ =} ”f(pn( V' A H )x! h;,-P’;) dxdyds
(3.5)

where suffix B refers to bottom boundary (earth surface)
values.

_ The invariance of quadratic form (3.5) is of uppermost
importance in establishing the wave-like structure of the
eigenmodes, the time dependency of which is, therefore,
restricted to pure oscillations. Considering now a dis-
crete, primitive equation model in ¢- coordinate, it
may be a relevant question to ask how well is this
structure reproduced in the underlying linearised
model. . Our purpose here is to derive a discrete o-
coordinate model of the full nonlinear primitive equa-
tions obeying the usual constraint of energy conserva-
tion, which can at the same time be linearised around a
prescribed resting state in such a way that the quadratic
perturbation energy is then also conserved. This last
property means that the model will have well defined
normal modes inspite of strong orography, with pure
oscillatory character in time.

The nonlinear form of the primitive equations which
corresponds to (3.1-3.4) reads as follows :

grad ' —sH' grad m | fNxV | [;7‘:_ —~0

(3.6)
a'#riaU'_SH' Bm/Ea =) (3‘7)
(1-+-sH') Dm/Dt 4+ DH'[Di = 0 (3.8)
Sy 'Te(a; +w)/5rr—-0 (3.9

All stratification functions are now functions of pressure
qnd as such, are bound to vary with time; and perturba-
tions with respect to the stratification functions have

been used in lieu of the full variables A and ¢. The
energy invariant can be stated as

= f f J Fs (_2— +H' +m- 4,'") dxdyde
(3.10)

The advantage of using m and s as basic functions of
pressure is that the same argument which leads from (3.1-
3.4) to (3.5) also leads from (3.6-3.9) to (3.10).
Direct discretisation of (3.6-3.9), if it is energy conser-
ving, will therefore ensure as well conservation of the
perturbation energy in the linearised case, which is the

property we are looking for,

The derivation of an energy-conserving discrete form of
(3.6-3.9) is obtained in the usual way and need
not be explained in detail. Using variables located as
shown in Fig. 2, a possible solution is the following :

SJ”—[sH'Jsﬁ’ZHNxv-k %,Y =0 (3.1)
Sz ¢'—sH' dzm=0 (3.12)-
(1 -+ sH') Dm/Dt + DH'[Dt = 0 (3.13)
v 48 (2 ) =0 (3.14)
y— (7]

with

J hP Z —Z
pm/Dt = {L 4w Ozmtv.om )/szp
' ot
(3.15)
Summing up, model (3.1-13.15)

(i) is energy conserving ;

(ii) allows the arbitrarily chosen stratification
S:-—{S(P),m(f’).....] as its proper state of
rest ;

(iii) is perturbation energy-conserving when lineari-
sed around stratification S in presence of
finite-amplitude mountains.

This model is hereafter referred to as model B,

The simplest case of our formulation is obtained when
S is isothermal : then, s reduces to a constant and m to
the logarithm of pressure. The corresponding form of
(3.11-3.15) has been extensively used (e.g., Corby
Gilchrist and Newson 1972 ; Burridge and Haseler
1977). Our formulation is but an extension of this
method to the arbitrarily stratified case. A last remark
concerning the formulation is that the stratification
functions can easily be changed at any time within
the integration, in order to follow the mean climatic

trend.

4. A preliminary numerical experiment

A thorough comparison of the dynamical behaviours
of two General Circulation Models requires such a
Jarge numoer of statistics that the computaional cost
would be prohibitive, at least on the scale of a single
institution. Therefore, we shall have to restrict our
attention to a few selected experiments. First we
decided to postpone the most sensitive comparison
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which would be a comparison of two parallel climatic
simulations using the same physical package, and try
instead two purely inertial versions of the models on
short range forecasts. The first test of the kind which we
performed — two 4-day predictions on the Basic Data
Set fields — will be described now.

Both models have been used in  a stripped-down
version involving no boundary layer, no moist con-
vection, no radiative forcing : only lateral diffusion
and dry convection wére added. The resolution used
was 64 points in longitude, 50 points from north to
south pole (regularly spaced in sine of latitude), and
11 layers. In model B we took Pr—=1 mb (remember
that Pp—=0 in model A); the relative depth of the layers
was otherwise the same, already described in Table I.
Horizontal differencing in both models follows the
potential enstrophy conserving scheme described in
Sadourny (1975 b). In model B, the mean stratifi-
cation is defined by taking h(P) as a cubic spline inter-
polation of the globally averaged data on 19 reference
pressure levels: g(r), m(P). s(P) are then defined
consistently.

Initialisation is performed by cubic spline interpo-
lations ol the Basic Data Set fields to our sigma levels.
The major defect of the resulting fields is the vertically

integrated divergence being too large by an order of

magnitude. An adaptation process based on [2-hour
time averaging of the solution gets rid of the resulting
gravity waves; all initialisation processes are performed
in an exactly parallel way for the two models.

The resulting two 4-day forecasts and the reference
GFDL analysis for the 500 mb geopotential fields are
shown in Figs. | (& b, ¢ respectively). The two fore-
casts are surprisingly close to each other considering
the rather drastic differences in formulation: in fact,
the same kind of uniformity in the results was one strik-
ing conclusion of the Basic Data Set Experiment com-
paring a wide range of General Circulation Models
(Gadd 1980). Whether this lack of sensitivity of the
models’ formulation is due to a lack of precision in
the data is still a debatable question, until similar
experiments are performed on a wide set of FGGE data
sets.

Minor points at this stage are the facts that model
A seems to produce slightly noisier fields, and model
B slightly more energetic long waves. It is, however,
interesting to notice that model B generates much less
internal inertia-gravity waves than model A — which in
a4 sense, was to be expected from its very formulation:
this can be seen in Fig. 2. if the vertical velocity variance
at 500 mb is accepted as an approximate measure
of internal inertial gravity wave energy.  These last
hints may bear some importance for future long term
integrations.
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