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ABSTRACT., The characteristics of wind fluctuations are eritically reviewed and analysed in terms of turbu-
lence, intensiy, power spectral density and correlation coefficient. It is shown that root mean square gust speed
decreases very slightly with height in the lower part of the boundary layer. Various mathematical models of power
spectrum for the three components of the fluctnating wind velocity are critically discussed. It is noted that u-
and v-spectra show a greater dependence on the type of the terrain suggesting that meso-scale features are of import-
ance for the low frequeney portion. The low frequency portion of - and v-spectra react to changes in atmospherie
stability with the v-spectrum being more dependent than u-spectrum. The w-spectrum follows the similarity
theory the most of the three components, The vertical spectrum appears to be dependent on height whereas it is
diffienlt to conjecture in favour of either hypothesis for the horizontal spectra. Correlation coeflicient measurements
of w- and v-components show that the length scales inerease with height. Based on the assumption of Taylor's
hypothesis and isotropy, expressions are given for the theoretical prediction of correlation coefficient, coherence and
the various length scales. Both analytical and empirical gust factor models are presented and it is shown that the

gust factor varies with the averaging time period, the site conditions and the height above the ground.

1. Introduction

Air never flows with a perfectly smooth and
streamline motion, but always with fluctuations
which, when sudden and relatively brief, are called
gusts, These velocity fluctuations are of virtually
all time scales, varying from fraction of a second
to many days and can become detrimental for
present day structures, as evidenced by partial
or complete failures of numerous structures in the
past, Besides the duration of the gust the dimen-
sions of the gust are also of importance in con-
siderations of wind loading on long structures.
For our purposs the instantaneous value of the
wind velocity (u) may be expressed as the sum
of two terms,

u =u+tu’

(1)
where w represents the mean velocity (its charac-
teristios were discussed inPt, I) and «' is the flu-
ctuating component whose characteristics are dis-
cussed in this paper.

2. Characteristics of atmospheric turbulence

The usual way of representing the character of
the wind fluctuations in quantitative terms is the
energy spectrum, usually the longitudinal energy
spectrum (Fig. 1). S(n)dn represents the mean
square value of the velocity flucutations in the
bandwidth dn centred at frequency n. By defini-
tion, the total energy of the turbulent fluctuations
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is given by the intergal of S(u) over the whole
range of frequencies, i.e., the total area under the
curve,

Wi fo. (#) dn = f “u 8. (n)d (logn) (2)
0 0

where S,(n) is power spectrum of u-component and
n is frequency in cyeles per sec. It is obvious that
the wind in the earth’s boundary layer consists
of fluctuations having characteristic periodicities
of the order of a year, several days, a day and a
minute. Thus the entire spectrum, may be divided
info three regions :

(1) The macrometeorological region associated
with large scale air flows—cyclones and anticy-
clones,

(2) The mesometeorological range which pro-
bably accounts for the diurnal wind fluctuations.

(3) The micrometeorological range which re-
presents the true turbulence of the flow, also
known as wind gustiness.

The primary production of wind’s kinetic
energy, derived from the sun through cyclogenesis,
takes place at the macrometeorological scales of
periodicity of several days, corresponding to the
major macrometeorological peak in the wind en-
ergy spectrum in Fig. 1. Solar activity accounts
for two subsidiary diurnal and annual peaks. The
formar is associated with diurnal heating and cool-
ing effects and is more apparent near the ground
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Fig. 1. Spectrum of horizontal wind speed near the surface of the ground

the latter arises from the annual variation in the
temperature gradient between the polar and
equatorial regions; this is less in summer and mean
monthly wind speeds may then be only two-thirds
those in winter.

Dissipation of the wind’s energy takes place at
the micrometeorological frequencies in the natural
boundary layer. The shear stresses induced at the
earth’s surface produce eddies having a scale of a
few thousand feet, the engery of which is derived
from the mean flow, and cascades down to smaller
scale motions to be finally dissipated through vis-
cosity; this is reflected in the micrometeorological
spectrum shown in Fig. 1. The peak in the energy
appears at a frequency of one cycle per minute in
a strong wind and somewhat slower in a moderate
wind. The energy level appears to vary directly as
the shear stress; consequently the fluctuation am-
plitudes are proportional to the mean wind streng-
th itself.” It should be realized that although a
spectrum such as Fig. 1 will only apply to a parti-
cular site and a particular height above the ground,
the general form of the spectrum and the position
of the peaks remain very much the same regard-
less of the geographical loeality, the nature of the
terrain and the height above the ground. One of the
most important distinetions that can be made is bet-
ween the fluctuations of a macrometeorological kind,
i.e., weather map fluctuations, and micrometeoro-
gical kind, i.e., gusts. From Fig. 1it is obvious that
the two types of fluctuations are separated by a
gap extending from roughly 1 to 10 cycles per
hour, to which corresponds a very low energy of
fluctuations. This portion of the spectrum is known
as the spectrum gap. Its practical interest is Justi-
fied by the fact that if the wind speed lb a\fqrage(l
over any length of time included within this gap
the value so obtained is essentially constant. From
this follows the current practice of using a sampling
time between 10 minutes and 1 hour to evaluate

the mean wind speed. Fig. 1 is based partly on the
data of Van der Hooven (1957).

Looking at the lower frequency end of the spec-
trum from a statistical stand-point, a given mean
wind speed can be associated with its return per-
iod, that is the number of days or years between
two occurrences of the same wind speed in relation
to the expected lifetime of the structure. On the
other hand, the shape of the curve at the high fre-
quency end of the spectrum means that the mean
velocity is likely to be considerably exceeded for
any period of time shorter than 10 minutes, say
a few seconds. If the duration of each gustis long
enough, it allows both the wind loads to develop
and the structure as a whole to deflect. It is this
aspect of natural boundary layer, namely the
characteristics of the turbulent fluctuations in the
wind, also called gusts, which is discussed below.
A knowledge of turbulent properties is required
not only for the analytical determination of the
dynamic response of structures to gusts, but also
for the correet wind tunnel modslling of turbulence.

Turbulent fluctuations of the wind (gusts) can
be best studied using the methods developed for
the treatmeut of randomly fluctuating signals,
encountered in communications and control en-
gineering. We assume that the gust fluctuations
about the hourly mean wind speed constitute a
stationary random process and that the gusts are
dependant only on two parameters, the average
wind speed and the surface roughness. Further, we
will ignore any systematic change of mean wind
direction.

The gusts vary both in space and time very ra-
pidly and may be written as,

v=0 (2, 2 t) (3)
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Fig. 2. Variation of r.m.s. gust
speed with height over
Rughy —

Fig. 3. Turbulence inten-
sity measurements
over Rughy

where v is total fluctuating velocity.

However, we will ouly study the Eulerian charac-
teristics, i.e., the time average properties at one
point of observation and, therefore, we may write
the gust velocity in component form,

v (1) =[ w (1), o' (1), w' (2) ] 4)

with the gust speed being defined as,

00| = w20+ 0+ w2 0 ]* )

where ', v" and w’ are fluctuating wind speed in x,y
and z directions. The root-mean-square (r.m.s.)
gust speed o (v) is defined by,

Ao=r],

= %J“.T[ w'® (1) + v'2 (£) + w'(?) ] dt

2
(1) | &

= 0% (u) + o* () + o (w) (6)

where o(u), o(v), o(w) are variance of w, v and
w components of fluctuating velocity.

Near to the ground level, o(u) ~ Bo(v) and o(w)
is still smaller, so that the conventional instru-
ments, sensing only «’ (¢) do provide a good approxi-
mation to o(v).

Fig. 2 shows the variation of r.m.s. gust speed
with height over Rughy. It is obvious that the
r.m.s. gust speed decreases very slowly with height.
Physically, ihe turbulence and hence tha gust
speed must tend to zero at heights approaching
the gradient heights. Assuming that the r.m.s.
gust speed is invariant and equal to the value meas-
ured at 10 meires above the ground level, Harris
(1970) showed, it may be related to the mean wind

velocity by, A
o (u) =2.58 K12 V,, (7)

K=Burface drag coefficient, V;,=Mean wind speed
at height 10m. From Fig. 5 (Pt. I) V;p—10-35 m/s
and taking K=0-006 corresponding to Rugby
terrain, we get o(u)=2-07 m/s, showing good agree-
ment with the measured value. Harris (1970) show-
ed that r.m.s. gust speed is virtually independent’ of
height ; a reasonable value of e(u) based on values
of Vy, 2, (subscript g shows geostrophic value)
and K suggested in Table 2 (Pt, I) is given by,

o(u)=0.117V, (8)
or,
o (u) ~0.19 V,, (9)

The ratio o(u)/V, is called the intensity of tur-
bulence. Since o(u) is almost invariant with height,
it follows that the intensity of turbulence decreases
with height, mainly because the mean wind speed
increases._ It may be written as,

o (u)/V: = 2.58 K13(10/z)* (10)

Fig. 3 shows the results of turbulence intensity
measurements over Rugby. Using the valve of ¥y,
from Fig. 5 (Pt. I) and from Equ. (10) we get for
o(u)/V,=0-17, in agreement with the measured
results.

Although turbulence in the atmosphere is genera-
lly both convective and mechanical in origin, in
high winds convective turbulence plays a relative-
ly minor role. The reason for this is, whereas mech-
anical turbulence rapidly increases in intensity
with wind speed, convective turbulence tends to be
damped out by the powerful mixing action caused
by the mechanical turbulence; the latter prevents
the necessary thermal instabilities from arising and
tends to reduce the amosphere to a state of neutral
stability. This almost complete predominance of
mechanical turbulence suggests that in high winds
the turbulence intensity near the ground will only
vary significantly with the mechanical drag forces
between the air and the ground and the height.
The influence of these factors on the frequency-
wise distribution of turbulent energy in the wind
is now discussed.

3. The behaviour of the variances in terms of similarity para.
meters

According to Monin-Obukhov similarity theory,
the non-dimensional variances, namely, o(u)/us,
o(v)/uy, o(w)/us are functions of R; or z/L
only (since z/L is a universal function of R; in the
surface layer). Here uy(=4/7y/p) is the friction
velocity, R, is the Richardson number and L is a
scaling (Monin-Obukhov) length, defined as, =

3
L=— ———u; L 4 11
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where ¢,=Specific heat of air at constant pres-
sure, p= Air density, 7'= Absolute temp., g—
Acceleration due to gravity, k=Yon Karman con-
stant and H=Vertical turbulent heat flux (posi-
tive upward).

Fig. 4 shows these relationships from many
observations (Prasad & Panofsky 1967). The rations
o(u)/uy, o(v)/usx show systematic variations
from place to place, suggesting that terrain
features of large scales than those characterized
by 2, influence their behaviour.  Furthermore,
o(v)/us shows an increase for large R;, suggest-
ing the existence of small-scale, horizontal
motions besides mechanical turbulence and heat
convection. The Monin-Obukhov prediction fits
best to the statistics of vertical velocity. Over
the range —0:5<< R; <0-2, o(w)/u; is essenti-
ally constant and equal to 1-3. For negative R;of
large magnitude o(w)/us varies as (z/L)'%,

In general there is very little vertical variation
of the variances in the surface layer. Besides, the
various ratios are relatively unaffected by terrain
heterogeneties.

4, The spectrum of gust velocities

According to Monin-Obukhov similarity theory,
the spectrum of a velocity component in the sur-
face layer is given upto a height of about

50 m by,

n S(n) . "

"—u—*g‘ =F (f 3 z;L) [l-)

where S(n) = Spectral density at frequency u,
f= Nondimensional frequency (= nz @).

The observations of vertical velocity agree quite
well with Eqn. (12). The lateral component, how-
ever, does not appear to follow the above similarity
law closely. The behaviour of longitudinal com-
ponent is intermediate between that of vertical
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Fig. 5. Spectrum of horizontal gustiness in high winds

and lateral components. The detailed spectra of
individual components are discussed below.

5. Spectrum of horizontal gustiness

The spectrum of horizontal wind speed over
an extended frequency range was referred to in
Fig. 1. The high frequency end of the spectrum,
also called the micro-spectrum, determining the
nature of the gusts is looked into greater detail
below.

A complete deseription of the average spatial
and temporal properties of gusts would require
a lmowledge of the relationship of each of the three
velocity components at one point in space to the
corresponding components at some other point.
From the viewpoint of wind loading of structures,
probably the most important power spectrum 1is
that of the longitudinal component since this gives
rise mainly to the fluctuations in drag. However,
in tall structures, the lateral component can also
contribute to the lateral fluctuations and in bridge
decks the vertical component of veloeity can give
rise to an important and somewhat unexpected
lift force (Davenport 1962).
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Power spectrum provides a description of the
evolution of the random gust velocity with time.
Fig. b shows measured spectra over different sites
of varyirg rovghness and height. At high mean
wind speeds the spectral peak app:ars to exist at
wave numbers between 0-001 and 0-002 cycles
m~ and the peak wave-length appears to be in-
dependent of the type of surface, a fact also con-
firmed by Deland and Panofsky (1957). At the
high frequency end cof the spectrum (wave-
lengths less than observation height) the eddiés
appear to belong to the inertial subrange of fre-
quencies. These eddies acquire energy only by
the decay of larger eddies and lose energy only by
transfer to smaller eddies ; the various forces are
insignificant and the average properties are de-
termined solely by the average rate of dissipation
of energy per unit mass of the fluid.

Based on the data of Fig. 5 Davenport (1961)
suggested the following expression for horizontal
gustiness,

L) T U
KV = |(4a*p8

(13)

where S, (n) is the spectrum of horizontal speed
atfrequency n and height z and z = Ln/V,, where
n/Vy, is in waves per metre, and L is a scale length
of the order of 1200 metres. The expression is also

o110

020

n (Hz)

Power spectrum for u-component at different heights over Rughy’

shown in Fig. 5. Following feature should be not-
ed. Almost all the engergy is confined to wave-
lenghs less than 2000 or 3000 metres. The spectrum
is proportional to KV, which ilself is propor-
tional to the shear stress between the air and the
ground. The spectrum is proportional to (n/¥V,,)—2/3
for large values of «/¥y,.

Since the mean-square fluctualion is proportional
to the area vunder the gpectrum it follows that the
turbulence intensity at height z is,

ww=[[= swin [ |1

—2.35 K127V,

=2.35 K'2(z/10)~¢ (Using the power

law expression
for mean velocity
profile).

This shows that both the turbulence intensity
and the power spectrum are independent of wind
velocity and dependent only on the height and the
roughness parameter of the terrain.

It is obvious that the peak of nSy(n) spectrum
occurs within a band of frequencies. Until recently
the bulk of evidence seemed to point to a slight
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systematic increase of #/nm in the first 100 m
(Berman 1965, Bush and Panofsky 1968). How-
ever, the latest analysiz by Ficht] and \L Vehil
(1969) of data froma 150 m NASA towerin Florida
fails to show any such systematic variation.

As regards the variation of o(u) with height, the
similarity argument implies constancy, in keeping
with the effective constancy of w, with height. For
height over which the fall of u, may no longer be

neglected, o(u) remains propor!i mal to u, (Panof-
bLy 1962). This means that (ou a given si te) the ch-
ange in o(u) between two levels should be propor-
tional to the wind s'peul (at a given height). \"alucs'
of ofu)/ug on various sites range from 2-1 to 2-9.

In the high {requency region, there is sufficien
e\'i(l(ﬂ:ce that ‘he wu-c mpone ! .“peu‘i‘-_lin fits
closely to the expected varia‘im wi.h frequency,
which is,

b’d{n,) == UIE'LE{J 3:!-_":’.3 kll)

where the universal constant €'~20-14 (» in Ha),
This follows from hc reasoning ]m the small
scale properties must be relat ed uniquely to the
rate of diszipation of (urbulent kinelic energy e.
It is known l-]ldu for low heights the —5/3 region
of the u-component speci.rum appears to hold for
wave-lengths upto several {imes the height. TPan-
ofsky (1 E)bq) sugges's that e may be obtained even
m unstable conditions from,

o uy® .

€ ]-'3 ¢H}, —Z L (1-))

where ¢,= Monin-Obukhov siability funciion for
momeniunm.

L

In praciice, especially a! low levels, ekz/u,®
appears to change little from unity as instability
is ncreased, which may reflect a compensation
from the diffusion term neglected in Eqn. (15).
Observations quite close to the ground often sug-
gest less energy in the vertical velocities than in
the lmnmudm J velceities at high frequencies.
Bush and Panofsky (1 9(18)'11”-11 ion that the —5/3
law for the la. er al compunents exist only as long
as the height iz at leas 7 times the wave- |u."_(_£ I
In other w: .“L | ME irolropy exiets :11l_|‘\' for wave-
leng hg much shorter than often assumed, and
for wave-lengths mueh shorter than those for which
the hoxizon .‘J velocity comp-ments obey the
Kolmogorov law for the inerial subrange.

Harris (1970) pr. j)-:‘('(i an lmprovemen! fo
Davenport’s expression which is given below,
)eb"(n[ o dz (16)
91 2\5/6

This is also shown plotted in Fig. 6 More receut
results suggest that La 1800 metres,
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Fig. 7. Auto-correlation funetion for u-eomponent from
measurements at 165-8 m over Rugby, Eqn. (20)

Herris®  measurements of power spectrum of
longitudinal component over Rugby for threa
flilferont heights are shown in Fig. 6 along with

Eqn. (16). Apart from the natural scatter at the
lower end of the frequency scale, the three experi-
mental speetra are consistent with the proposal
that the speetrum is invariant with height. The
shape of the predicted specirum is substantially
the same as that obtained experimengally.

Another method which can be used to deseribe
the properties of a random signal is through auto-
covariance function C () defined as,

O =<u(hu(t+7)>
1
= f: w(t)u(t+s)dt (17)

(here the notation <>, denotes an average with
respect to time). In normalized form, it is called
the auto-correlation function p(r), given by,

p(r) = C(r)/C(0) = Cr)/o%(u) (18)

p(r) may be regarded as a quantitative measure of
how much information & measurement of the
gust component at one instant of ftime gives
about the value which will be measured 7 seconds
later. In other words, the gust signal, as it evolves
in time, has associated with it , a- characteristic
‘memory time’ of time scale T, such that the
measurement of signal provides reasonable
information about the value = seconds later if 7<<T
and little information if r >T. Tis defined as

3

oC
== T (l‘l'
= f . pl7) (19)

where ' may be called the average ‘memory time’
of a gust.
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Fig. 8 (a). Diamensionless logarithmic longitudinal spectra
for neutral wind conditions plotted in Monin
coordinates

Auto-sorrelation funetion for longitudinal eom-
ponent at 2 height of 1658 m as measured by
Harris over Rugby is shown in Fig. 7. The auto-
correlation function and the pewer spectrum form
a Fourier trensform pair. Using this relation-
ship, Harris derived the following formula for the
auto-correlation function,

9 o \12 3
o Hﬁ)(_)) K@ (0)

where 7=24/2xV;,7/L, I'(1/3) has the numerical
value 2:679 and Ky (r) is a modifiel Bessel
function of the second kind of crder 1/3 (Tables
of Bessel function of fractional Order, 11, 1949,
Columbia Univ.Press). This is also shown in Fig. 7
and is in good agreement with the experimental
measurements. Integrating the above equation
we get the time scale of the turbulence (see Eqn. 19)
as,

T = /3 1(56)y/7 T(1/3)L/V1o
= 0.084L/ ¥y, (21)

where I'(5/6)==1-129. Note that this time scale is
independent of height above ground level.

Fichtl, Kaufman and Vaughan (1970) measur-
ed the power spectrum of the longitudinal and the
lateral components of turbulence at the Kennedy
Space Centre, Florida in neutral wind conditions.
They assumed that the similarity theory of Monin
(1959) for the vertical velocity spectrum could be
applied to the longitudinal and lateral spectra too,
so that,

nS(n)/ul=F(f, Ri) (22)
where Fisa universal function ‘lf the dimension-
less wave number f, given by nz/u and the gradient

=]
-

n Sv(hi/ uZ*

0-DI M R TTH | P BT T | [N
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Fig. 8 (b). Dimensionless logarithmie lateral spectra for
neutral wind conditions plotted in Monin
coordinates

Richardson number Ri In neutral conditions
Ri =0, and for this case Fig. 8 shows the
dimensionless logarithmic longitudinal and lateral
spectra plotted in  Monin coordinates. It is
obvions thet the position of the maxima shift
towards higher values of f as the height increases,
implying that Monin coordinates [nS(n)/u,? f] fail
to collapse the spectra in the vertical and thus an
added height dependence should be included.
This has been confirmed by measurements from
the tower data from Round Hill (Bush and
Panofsky 1968). This may be explained by the
fact that the Reynolds stress and the length scale
used to seele the wave number n/u  vary in the
vertical direction. However, the data appear to
show, that Monin coordinates will collapse
spectra with various turbulence intensities at any
particular level in the vertical, confirming the
earlier observation that the horizontal spectrum is
indepéndent of the nature of the roughness of the
terrain.

To produce a vertical collaspe of the data,
Fichtl et al. assumed that the spectra in the
Monin coordinates are shape-invariant in the
vertical, a reasonable hypothesis permitting a
practical approach to developing a spectral model
of turbulence.

Fig. 9 (a) shows the vertical variation of the
dimensionless wave number f,, associated with
the peak of the logarithmic spectrum S(x) along
with data from other tower sites. Also shown is
the least-square-analysis curve,

Fru=0+03(2/18) (23)

where z is in metres. A plot of #S,(n)/uy® versus
S| foe Will shift the spectra at the various levels,
so that all the peaks of the logarthmic longitudinal
spectra are located at f/fm,=1.
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Fig. 9 (a). Vertical distributions of f,,, and [y, associated

with the peak of the logarithmic u- and v-spectra
for neutral stability conditions

The average ratio B,(vertical collapsing factor
for power spectrum for u-component) of the shifted
spectrum at level z and the 18-metre spectrum
is shown in Fig. 9 (b), along with the least-square-
analysis curve,

ﬂu=(z/18}“°“’3 (24)

where z is in metres. A plot of uS,(n)/B,ux"
versus f|fu, will collapse the longitudinal spectra
(see Fig. 10).

Fichtl ef al. have suggested the following ex-
pression to represent the longitudinal spectrum.

wSu(m) _  Cuf/fmu

Buu*a X [ 1+1 5(f /‘fmu)w ]5,'3 T
where C, and r, are the constants. Using a
lc-ust-square-:mu,lysis of the data of Fig. 10
C,=8'641 and 7, = 0-845.

(25)

Using similar analysis Fichtl el al. obtained the
following expression for the lateral spectrum,

olum) _ Ooffm

Bd uﬂ* [] —i— j {4 5 (j:f"”_)rr ]5.’3 To

where C, == 8686, r,= 0-512 based upon least-

square—alml_ysis of the above data. The corres-

ponding data for fum, and B is showninFig. 9 (b)

and Fig. 10 along with the least-square-analysis

curves.

(26)

It should be noted that w-spectrum shows a
greater dependence on the type of terrain
(Fig. 11 a). Itis obvious that the spectra do not
follow similarity theory, and further the shapes of
the spectra from various cities differ widely.
In particular, the wave-length at the maximum
varies considerably from site to site. It is parti-
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cularly long for cities. This suggests that it is the
the meso-scale features that determine the chara-
cteristics of the low frequency portions of the
u-spectra, end not the roughness length z,, which
is a measure of local roughness. Spectral densities
of lateral velocities hehave very much as those of
longitudinal velocities, only more so.

The low freauency portions of u- and v-spectra
react to changes in atmospheric stability (Bush
et al. 1968).  For wu-spectra energy decreases
somewhat as stability increases; for the v-spectra
changes are more pronounced. In stable air there
is very little energy for frequencies of the
order of 1 cycle/min or smaller (Fig. 11b).
Since the energy of the u-components at these
wave-lengths is still quite large, ‘eddies’ in stable
or neutral air are elongated along the wind.
However, in very stable air, the v-spectra some-
times show gaps between this very low frequency
domain and the high frequency mechanical
turbulence (Lumley and Panofsky 1964).
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Fig. 11(a). Assorted wu-spectra at various locations, (a) St.
Louis 76m, (b) New York 177m, (¢) Brookhaven 91m,
(d) South Dartmounth 15 to 46m ( neutral and uns-
table), (¢) New York city 280 m, (f) Montreal 78 m,
(g) Hanford 386.1m, (k) Cape Kennedy 90m and 120 m

6. The spectrum of vertical velocity

The spectrum of vertical gustiness has been
studied extensively by Panofsky and McCormick
(1960).  Besides, from rtecent observations
(Pasquil 1971) in the first 100 m above the ground
the w-speotrum has been found to have the form
shown indiceted in Fig. 12. The spectral density
is scaled w.r.t. w2 end the characteristic frequency
w.r.t. 2/iI, as predicted by application of the Monin-
Obukhov similarity considerations,

nSy(n)/o? (w) = G(nz/i)
a(w)u, = Constant (27)
where ' = Gust factor

In principle, functions of z/L should be included
to ellow for the effects of thermal stratification.
It eppears, however, (see Bush and Panofsky
1968) that the simple forms in Eqn. (27) provide
an adequate representation not only in neutral
conditions but also over a practical range of un-
stable conditions, with the maximum value of
nS,,(u)/uy’ 2pproximately 0-4 at nz/4 near 0-3. As
regards total energy several independent estimates
of o(w)/us in neutral and moderately unstable
conditions now indicate a value near 1-25.

Panofsky and McCormick have suggested the
following empirical formula —

nS,, (1) o 6f
w2  (L+4f)?

where, f is the ratio of height to wave length.
An important distinction between vertical and
horizontal gustiness is that the former appears to be
strongly dependent on the height; the low fre-
quency part of the z-spectrum as compared to
u-spectrum is well defined and reproducible.

(28)
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Tig. 11(h). Spectra of lateral velocity at South Dartmouth,
Stable : a-46 m, b-91m; Unstable : ¢-15 and 16 m,
d-40'and 46 m; Neutral ; e-15 and 16 m,
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Fig. 12. Micro-meteorological w-spectra in the
first 100 m above ground — Eqn. (29)

To sum up, for generalization on the frequency
spectrum of the natural wind, the only realistic
basis at present-appears to be a combination of
the similarity ideas with eritical empiricism. Un-
fortunately, while this seems to produce a tolera-
bly satisfactory presentation of the w-spectrum,
the case of wu- and v-spectrum is still rather
confused. Theonly conclusionsthat can be drawn
for heights upto 100 m are :

(1) The spectral densitieson thelow frequency
side of the peak are especially variable.

(2) The peak of the nS,(n) spectrum occurs

at an equivalent wave-length varying
between 300 and 600 m.

(3) On average the spectra on the high-
frequency side fits closely to (18),

nSy(n)/uy® = 0°26 (nz/a)—2R (29)

hBut individual samples deviate widely from
this,
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Fig. 13(a). Cross-corrclation of along-wind pressure
component

PART 11T

7. Correlation functions — Space-time strueture

Until now, only the simple time average pro-
perties of the gust wvelocity were considered.
However, time averages of the turbulent fluc-
tuations of wind speed at one point in spece
reveal little about the spatial distribution of gusts,
which becomes important while considering the
wind loading on an extended structure such as a
long bridge, tall mast or skyscraper. This can be
measured by the cross-correlation coefficient
between two velocity measurements separated hy
a certain distance. The cross-correlation fu-
netion for zero lag is a meesure of how much
information is given by a measurement of the gust
velocity at one point, about the value of the gust
ot the same instant of time at some other point.
Therefere, if the above function is integrated with
respect to the distance between the two points of
measurements the result is a length, which re-
presents =average extent of the gust size, zlso
referred to as integral length scale of turbulence.

According to Taylor’s (1935) hypoethesis, space
correletions in x-direction with zero time lag
are equel to Eulerian time correlations, provided
z = Vi, Melnichuk (1966) has recently repeated
this test of Taylor's hypothesis from an analysis of
Doppler radar records of rain &t 80 m and showed
that the correlation function following the mean
motion is not very different from Legrangian corre-
lation function.

Mathematically, the cross-coveriance function of
the gust velocity at the point r and at ' is defined
as,

Cii(nt'n)=<v(n,0). 4 (1t + 1) (30)

and the normalized cross-covarianee, also called
cross-correlation, as

Cij (2,15 7)
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Fig. 13(h). Cross-correlation of cross-wind pressure
component

where (s cross-covariance between th and
jth gust velocity, v; and v are fluctueting velocity
in ith ard jth directions. pj; is cross-correlation
function,

Fig. 13 shows the correlation of the longitu-
dinel and the latersl component of the gust velo-
city ssa function of the distence for three different
heights (Hearris 1968). For the longitudinal com-
ponent (Fig. 13 2) the general shape cf the curves
for varying height is the same, although the cor-
relation increases with increasing distance above
the ground implying that the length scale (given
Dy the total area underthe curve) inereases with
height. The same holds true for the lateral com-
ponent (Fig. 13b) except that the correlation
curves for all three levels cross the horizontal axis,
and thet o considerable region of negetive turbu-
lence exists. In this case the corresponding length
sceles obtained by integration would therefore
be the difference between the area under that
portion of the curve which lies above the axis, and
the area above that portion of the curve that lies
below the axis.

Correlation, coefficient may also be calculated
theoretically. However, one needs to make two
simplifying assumptions. The first is the appli-
cability of Taylor’s hypothesis, nemely that tur-
hulence is convected along by the mean flow
veloeity, without evolving appreciably in a short
distance. The second assumption, which is much
more drastic, is that the turbulence is approxi-
mately homogeneous isotropic. However, homoge-
neous isotropic turbulence requires & boundless re-
gion end & uniform rate of generation of turbulent
energy per unit velume, Clearly, this is not true
for a atmospheric turbulence since it arises from
the presence of the rough boundary of the earth’s
surface and is generated at that surface. Neverthe-
less, it has been found experimentally thet at
large heights above the earth’s surface, the turbu-
lence does tend to become isotropie. Most of the
wind loading on a tall structure is determined
by the loading on the uppermost third, so for all
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Fig. 14. Tllustration of longitudinal and lateral velocity
correlations

practical purposes, the assumption of homo-
geneous isotropic turbulence holds valid. Using
Taylor’s hypothesis, we mey identify the auto-
ccrreletion function p{7) (Eqn. 20) with f(r) (see
Fig. 14 for definition), as follows,

where =1V, & T=127;V. [V,

and for homogeneous isotropic turbulence g(r),
is related to f(r), by

g =f(r)+4r % 9)

Finally, it follows from spherical symmetry that
all the nine auto-and cross-correlations between
the various velocity components at two points
may be written in terms of f(r) and g(r) according to
the relation,

o) =TI Lg sy G

where 8;; is the Kronecker delta and

5 = x—ax;" and r® = §; si
for 1=7=1, we have

pii \1) = pii (r', 75 7)
The cross-covariznce may then be obtained by
using the following relationship,

Cij (r, J:’l T) = o® (¥) Pij T r's ) (35)

(orrelation for the longitudinal component

of the gust velocity as predicted by Eqn. (34) with
the measured values of Harris (1970) for one large
height is shown is Fig. 15,
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TFig. 15. Cross-correlation between longitudinal compo-
nents at 1658 m and at 149-8 m

It is obvious that where both the positions
considered are at large heights above ground level,
the agreement between theory and measured values
is good; it became progressively worse nearer to
the ground, since nearer to the ground the assu-
mption of homogeneous isotropie turbulence is no
longer valid.

Just as the variance could be broken down
freauency by frequency into a spectrum, so ¢an the
cross-covariance.  In the frequency domain the
cross-gpectrum may be derived by the following
relations,

8(r, 7 m) = Py(r, v's m) -+ iQ;; (r,r'; n) (36)

Py (rar'im =2 [0y (1, 25 7) +
1]

Cij(z, r'i—)] cos 2 nrdr (37)

Qi(r, 13 1) = 21?’[0.-3- (£ 15 1) —

Oy (1, 1's—)] sin 27neds (38)
where P; is the cospectrum (in-phase com-
ponent) of the cross-spectrum, Q;; is the quadra-
ture speztrum (out-of-phase component) of the
cross-spectrum and Sy 18 the point-spectrum,
with

Sii (r, 13 m) = Pi (1, 1" 1) (39)

Qi (r, 73m) =0 (40)
Since the cross-covariance is not a symmetrical
function of 7 , the cross-spectrum is a complex
quantity. The normalized cross-spectrum obtai-
ned by dividing the cross-spectrum by the square
root of the product of the apprcpriate power
spectra, may be written as,
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The square of absolute value of of the norma-
lized cross-section, i.e., [Rij \v, 7'; n)? is termed as
coherence. The real part of R; is called the
co-coherence  and the imaginary part, the
quad-coherence.

The existence of the quadrature component can
be taken to indicate a preferied orientation of
eddies and, therefore, only occurs when there is
asmmetry present in the flow. For example there
isno significant quadrature component in the
cross-wind horizontal cross-spectrum between like
components of the velocity; in the vertical diree-
tion, however, when there is strong asymmetry,
the quad component is non-zero, although not
usually as significant as the co-component. For
practical purposes it is probably quite adequate
to neglect the quad component and take coherence
as equal to the square-root of the real part of the
normalized cross-spectrum.

Rij(r, y'sm) =

Fig. 16(a) shows measurements of coherence
taken over terrain of typical roughness for various
levels. It is obvious that data for this terrain from
different pair of levels fall close to a single curve
which approximates to simple exponential form,
given by the following relation,

Coh (n)=exp (—CnA2|Vyy) (42)

where the value of the coefficient €', varies from
terrain to terrain, i.e., nature of roughness, but
is independent of the height of measurement,

Coherence may also be calculated theoretically
from cross-covariance using the assumption of
homogeneous isotropic turbulence. However,
in this case the cross-correlations are symmetrical
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Fig. 16(h). Coherence function for u-component at various
levels over Rughy

functions of 7, so that the normalized cross-

spectrum 1s real, and its square is, therefore,

equal to coherence. Under these assumptions,

Harris (1970) obtained for the cocoherence the
2

following formula:
' 7 \°/°
=zomils) Koo (1)

R (321 833 n)
7 \11/6
)" (o)}
where K,/ and K ; are modified Bessel functions
of the second kind of order 1/6 and 5/6, and g
is given by,

0 =27 Vigy/[(s5+3) 2+ DIL V.

where @ =aL/Vy,

Fig. 18 (b) shows the measurements of coherence
for the longitudinal component as a function
of frequency over Rugby for varying height along
with the expression (43). The agreement is good
at large heights above ground level, but deterio-
rates for points nearer to the ground. Moreover,
it confirms the above observation that coherence
is independent of height within the limits of
experimental accuracy. For separation in the
lateral direction the expression given in Eqn.
(42) for coherence is recommended but the value
of €, would be higher in this case. Harris (1970)
suggests that expression (43) should be used with

(43)

(44)

(:?—{—;;2:) replaced by (2—|—4:;,3) in the definition of 5
(Eqn. 44).

It was mentioned before that cross-correlation
is a numerical measure of the information which
is given by a measurement of the gust at one
point about the gust at some other point. Physi-
cally, gusts are of limited size, and a measurement
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over level terrain of differing roughness for the w-and v-components of wind velocity "as
functions of inverse wave number
of the gust at one point gives only limited informa- TABLE 1
tion about the value at another point. A measure Variation of length scales with height at Rugby
of the size of the gust, may be obtained by inte-
arating the cross-correlation for zero lag; this is also Height L+ I, iL,
referred to as the integral length scale of turbu- (m) (m) (m) (m)
lence. —_— — e o TR
Mathematically it may be defined as, 18 67 9* 84
o« 100 68 50 113
i 82 *
Ly =fo pii (i, z,; 0) dr (45) : LS 7 126

where the superscript ¢ refers to the component
of gust velocity being measured and z; denotes
the axis of separation of the two points of measure-
ments, Thus three length scales can be defined
for each gust component with respect to the
thrée directions in space. Thus for the longitu-
dinal component, using the definition of f(r) and
g(r) (Fig. 14) the three length scales are given
by,

L, _-—_'fo flr) dr (46)

o

L:;: Lz"z f“ g(?‘)dﬂ‘=% L: (47)

Similarly, we can define length scales for the
other two components of the gust velocity using
Taylor’s hypothesis, These length scales can
be related to the time scale of the standard gust-
spectrum by,

L=V, T=0.084 LV,/V
=151(2/10)°
L= L'=1L" = T5.5 (z/10)"

(48)
(49)

These equations imply that the length scales
are related to the height above the ground and
the roughness of the terrain and that the length
scales increase with height at the same rate as
the mean wind speed. Panofsky and Singer
(1965) have suggested that the vertical integral
scales are proportional to 22/, Fig. 17(a) shows
the change of scale length with height for different

terrains [the values of & used are those suggested
in Table 2 (Pt. I)].

Measurements of L. at Rugby have con-
firmed the values given for an open country
site. It should be noted that Z; and L.’ willonly
beequal to }L. for homogeneous isotropic turbu-
lence, Nearer to the ground L; / L. will be higher,
The available data indicate that instable and nexut-
ral conditions the cross-wind integral scale of the
u-component L, isless than the alongwind integ-
ral scale I, by a factor of six (Panofsky 1962). In
the case of L; the asymmetry in the flow created
by the presence of the earth’s surface gives rise

to two values of L; at each height, depending
upon wheth_er the integration of the cross-correla.
tion is carried out with respect to vertical separa-

tion upwards L. or downwards L' . Based on
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the correlation measurements given in Fig. 13,
the appropriate values _uf the corresponding
length scales are shown in Table 1. The values
marked ¥ are estimated because of lack of
experimental data.

Tig. 17(b) shows Cramer’s (19:_39] measurements
of the along-wind and cross-wind scales of the
u-and wv-components of the gust vector,
These suggest that the along-wind scales of both
the along-wind and cross-wind velocity com-
ponents (Leand L) ave roughly 1/6 of the
wave-length in both stable and unstable atmos-
pheric conditions. In unstable conditions the
transverse scales of the same two velocity com-
ponents are again roughly the same but slightly
smaller being 1/10 of the wave-length. In stable
conditions the cross-wind peaks are very much
less than the along-wind being roughly 1/40 and
1/25 of the wave-length for the along-wind and
cross-wind components respectively.

The indication this gives is that in unstable
conditions the along-wind and cross-wind seales
are about equal (and equal to 1/6-1/8 of the wave-
length), and in stable conditions the eddiesare
very much elongated in the direction of the wind
and the cross-wind scales are of the order of
1/3-1/5 of the along-wind scale which is .ll'S'{‘lf
equal to roughly 1/8 of the wave-length. Majority
of evidenc: suggests that the elongated ecddy
model is more representative.

Furthormore, hacause of wind shear, its major
axis is not aligned with t.].w mean flow d_i!xnc!iun,
but points upwards forming an :u_lglp wn‘-h the
horizontal, In other words, a gust is experienced
at the top of a high tower before its base.
It is obvious from Fig. 18 that shear slopes definad
by Az/Az are always larger for the lateral com-
ponent » than for longitudinal —component w.
Generally the slopes vary between 0-5 and 1 for
the u-components and between 1 and 3 for the
v-components. They show a tendency to decrease
with height. This is also confirmed by the rc:-.s:u]t.*
of Grant (1958) who also found that the longitudi-
nal scale was T to 8 times larger than the lateral.
It may ba concluded that in stable and neutral
conditions Ly is greater than L, . by a factor
of 7, and in convective (ligh.t wind. unstable)
conditions the difference is slight and probably
negligible as a rough approximation.

For the practical application of these concepts,
one must consider that this generalization only
applies above regularly rough hl.n'f'fi('-l.’. which
means above the roofs of the buildings In an
urban area. Below this level, the flow will be a
composite of wakes, deflections, and (%ha_mwllmg,
local effects produced by the buildings and

a
Ao = " uv
Broo aveny v
0 °\. Round+ifl g4
o c\e ve  WhileSudsan

-

SLOPE AT Af

O i )] B . =

O 0 -0l -0Z a3 i <L3h

zL

Fig. 18, Slope of eddies for the u-and v-components of
the wind as function of of z/L

their relative position, a situation precluding

any possible form of generalization,
8, Gust Factors

Wind speeds used in current design specifica-
tions are based on mean wind speed observations
multiplied by a constant gust factor to allow
for the fluctuations in the wind speed. However,
this procedure neglects hoth the dynamic properties
and the size of the structures. Moreover, assuming
a constant gust factor is equivalent to assuming
that the intensity of turbulence is identical for
all sites, The results given above show that this
is obviously incorrect. Further, the maximum
wind speed also varizs with the time over which
it is averaged. Thus, the gust factor should
also be rolated to the time with the shorter time
gusts being more important for csrtain loading,
as for example in claddings, ete, than the longer
time gusts,

The gust factor ¢ is defined as,

G = ulu (50)
where u is the peak wind speed within a data
record of length ¢ in time and G is the mean wind
speed associated with the record. If o denotes
the variance of the fluctutations of velocity about
he mean, then u+3e is an estimate of the peak
wind spesd; thus we may write,

G=1+3o/u (51)
where o is related to the friction veloeity Uy,
through

o=A(R;, 1) uy (52)
whera o is a function of the Richardson number

R; and the averaging time ¢,

It was shown before that the natural houndary
layer profile may be represented hy a power
law for simplicity as opposed to a logarithmic
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Fig. 19 (a). The gust factor at the 18m level as a function

of the averaging time for various peak
wind Speeds

law. However, in the surface layer (the first 30
metres of the boundary layer) the wind profile
is best given by,

G =y [i _y (R:)] (53)

ke %o
where k=0-4, z, is the surface roughness length
and ¥ (R;) is a universal function of Ri. For
neutral condition R;=0 and hence ¥ vanishes.
Combining the above equations, we ge’,

3kA (Rs,t)

=14 — 54
% Th 2/zg— ¥ (Ri) (&)
In neutral atmosphere we have,
3kA (1)
=1 5
% +ln 2(% (55)

As the averaging time decreases, the variation
will dacrease so that A4 is a decreasing function
of the averaging time and thus G is an increasing
function of the averaging time. Furthermore,
it is obvious from Eqn. (54) that the gust factor
decreases as the height increases. As the air
becomes more stable, R; decreases and hence
the gust factor increases.

Fichtl et al. (1970) developed a gust factor
model for the Kennedy Space Centre with 181
hours of turbulence data encompassing a broad
range of wind conditions. Fig. 19 (a) shows the
dependence of the 18-metre level gust factor

Fig. 19 (b). The gust factor as a function of the peak
wind speed at the 18m level for various heights,
associated with a 10-minute grand average

on the averaring time and the peak wind speed
and Fig. 19(b)shows the dependence of the 10-
minute gust factor on the peak wind speed and
height. Here the peak wind speed at the 18-
metre level plays the role of a stability parameter.
Within the range of variation of the data, the
1-hour gust factor and the 10-minute gust factor
are approximately equal, confirming the carlier
observation that the spectrum of the horizontal
wind speed near the ground is characterized
by a broad energy gap centred at a frequency
approximately equal to 1 cycle/hour.

It is noted from above that the gust factor
varies with the averaging time period, the site
conditions and with height above ground level.
Another way to represent the collective effects
of these various parameters is to express the
gust factor in terms of the turbulence intensity

ofi.
Mackey (1970) obtained the following expression

for the gust factor [G(t/T)] in terms of turbulence
intensity.

G (t/T) = 1.06226 (o/u)! 2716 log (t/T)  (56)

Using the above equations and adopting the
values of 0-26, 0:16 and 0-08 for the turbulence
intensity in urban areas, open country and open
sea-front areas respectively, Table 2 shows the
computed gust factors for various averaging
periods. It should be noted that Eqn. (56) applies
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TABLE 2
Theoretical gust factors fer various averaging periods

Gust period t (sec)

G (t[T) — \
T=3600 sec 3600 600 300 60 30 10 5 3 1
Urban aren o/ V=0-26 1-00 1-202 1-27 1-461 1-538 1-662 1-738 1-797 1-922
Open country o/ V=0-16 1-00  1-108  1-150  1-248  1-200  1-35  1.398  1-430  1-406
Open sea of V=0-08 1:00 1-047 1-062 1-102 1-120 1-147 1-164 1-177 1-205
to wind velocities determined at a single point 0-001 and 0-002 eycles m—1 and the peak wave
in space. length appears to be independent of the type
For the design of most enginecring structures “f.tt hels,l“f?ce'] In the dhlng freqqency. TRES,
which are sensitive to wind, determination of T ‘: Close. "o 1 ggiun[, o st:;}ra.tions indicate
. . . % - ) o Y "ho A 3
the gust factor at a single point in space 18 insuffi ,[Q}EL.{'L o (]rnel‘g_vr. m] 16 longitn 1{_113. S g
. . F L] he Vp b | 3
cient. For tall slender towers and pmut-hlock, 121 in the vertical components of fluctuations,
high-rise buildings, for example, a knowledge
of variation of gust factor with height is vital u- and v-spectra show a greater dependence
to economic design, whereas for long span bridges, on the type of terrain suggesting that meso-scale
slab-type buildings and overhad econductors features are of importance for the low frequency
variation of gust factor in a horizontal plane portion. The low frequency portion of u- and
may b2 the dominant consideration. Estimates v-spectra react to changes in atmospheric stability
of the variation of gust factor with height can with the wv-spectrum being more sensitive to
be obtained but the knowledge of the variation atmospheric stability. The w-spectrum follows
of the gust factor in a horizontal plane is practi- the similarity theory the most out of the three
cally non-existence. components and shows a marked dependence
9. Conelusions on height.
From the above the following conclusions <
¢ i Based on measurements of cross-correlation
may be drawn : T i A
and other results, tentative conclusions are
The entire wind spectrum may be divided derived about length scales. It is suggested
into three regions : the macro-meteorological region, that the length scales are related to the height
the meso-meteorological region and the micro- ahove the ground and the roughness of the terrain
meteorological region (the region of greatest impor- and that the length scales increase with height
tance to us). at the same rate as the mean wind speed.
8. gust speed decreases very slowly ¢ T : : i
;Vl 2 ot sl peakatatit e time period, the site conditions and with height
ity ahove tha ground. The gust factor decreases with
At high mean wind speds the spectral peak increasing height and increases with increasing
appears to exists at wave numbers between surface roughness and atmospheric stability.
Nomenclature
. 3 J: ] a .'-‘ [’ Y =Nz 5
C(t) Auto-covariance i Non dimensional frequency (=nz/u)
@i Cross-covariance between i thand j th gust f(r) Basic correlation function

velocity
Specific heat of air at constant pressure
G, Empirically determined parameters oc-
curring in formulae of power spectra

e

P

¢

uw?

fo: fue Value of f associated with peaks of
logarithmic u- and v-spectrum

q Acceleration due to gravity, or a sub-
script denoting geostrophic value
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g(r) Basic correlation function v Total flugtuating velooity
G, G(t/T) Gust factor v; Fluctuating velocity in the ith direction
H  Vertical turbulent heat flux, positive up- v, Mean wind speed at height 2
ward V1o Mean wind speed at height of 10 metres.
k Von Karman constant @ nL{ Vi,
K  Surface drag coefficient z Distance in the vertical direction
L  Monin-Obukhov length % Surface roughness length
L  Integral length scale mph - Miles per Lour
Li,; Length scale of the ¢ gust component in r.m.s. Root-mean-square
a;-direction w.r.t, With respect to
m  metre o Power law exponent
n Frequency in cycles per second

B, Vertical collapsing factor for power spec-

;5 Real part ss-spect:
P; Real part of cross-spectrum tra for u-component

@i; Imaginary part of cross-spectrum

3 . B.  Vertical collapsing factor for power spec-
- y y de ne rameters occur-
i rute Empirically determined pa 44 fiir g-oomponient
ring in formulae of power spectra
R; Richardson number € Rate of dissipation of turbulent kinetie
Rij Coherence energy per unit mass
S(n) Spectral d-nsity at frequency » 9a Monin-Obukhov stability function for mo-
S (n) Su(n),S,(n) Power spectra of the u-, v- mentum
and w-components i
: a(u), o(v), e(w) Variance of w, » and w components
i ross-spectrum ) of u, :
Sl fecegep ] of fluctuating velocity
T Absolute temperature, total time during . | :
which signal value is averaged o(v) Variance of total fluctuating velocity
© Poalk wind speed in x-direction 7 Horizontal shearing stress, time lag
P! 18 ) g
uy;  Friction velocity [ =4/(r./p)] p  Air density
# r ’ i . 1 3 - . .
w, v, W g_luc?_wtmg wind speed in X ¥,z pij  Cross-correlation function
irections
@, v,w Mean wind speed in the along-wind, p(-) Auto-correlation coefficient
ross-wind and the vertical directions RN >
i e ¥  Logarithmic -wind profile stability defect.
respeetively
|
REFERENCES
Berman, S. 1965 ‘Estimating the longitudinal wind spectrum near
¢ the ground’, Quart., J.R. Met. Soc., 91, pp. 301-
317.
N. E., Frizzola, J. A. and Singer, L. A. 1968 “The micrometeorology of the turbulent flow field in
Ehaie N s Sytmots oy the atmospheric surface boundary layer’, Act a
Poly, Scand. Phy. including Nucleonics Ser., Ph.
No. 59.
Bugh, N. E. and Panofsky, H. A, 1968 Quart. J. R, Met. Soc., 94, pp. 132-148.
Cramer, H. E. 1959 ‘Measurements of turbulence structure near the
il ground within the frequency range from 0-5 to
# 0-01 cycles [sec’, Adv'nces in  Geophysics,
Academic Press, New York.
Davenport, A. G. 1961  Quart, J. I, Alet. Sec., 87, pp. 194-211.
. 1962 ‘Buffetting of a suspension bridge by storm winds’,
J. 8tr. Dvn., Proc. ASCE, 88, pp. 233-267.




e

V. Kz. SHARAN

REFERENCES (contd)

Deland, R. J. and Panofsky, H. A.

Fichtl, G. H. and MeVehil, G. E.

Fichtl, G. H., Kaufman, J. W. an Vaughan, W. W.
Grant, H. L.
Harris, R. L

Lumley, J. L. and Panofsky, H. A.

Mackey, S.
Melnichuk. Y. V.
Monin, A. S.
Panofsky, H. A.

Panofiky, H. A, and McCormick, R. A.
Panofsky, H. A. and Singer, L. A.
Pasquill, F.

Prasad, B. and Panofsky, H. A.

Taylor, G. L
Van der Hooven, 1.

Columbia Univ. Press.

1957

1969

1970
1958

1968

1970

1964

1970
1966
1959

1962
1969

1960
1965
1971
1967

1935

195

1949

and

The

‘Structure of turbulence at  0'Neil, Nebraska
its relation to the structure at Brookhaven’,
Penn. State Univ. Sei. Rep. No. 2.

‘Longitudinal and lateral spectra of turbulence in
the atmospheric boundary layer’, Agard CP
No. 48.

Building Science Series 30, pp. 27-41.

J. Fluid, Mech., 4, pp. 149-170.

‘Measurements of wind structure at heights upto
598 ft above ground level’, Symp. on wind effects
on buildings and structures, Loughborough.

“The nature of the wind’, A CIRIA Seminar o<n
“The modern design of wind sensitive structures’,
London.

The structure of almospheric turbulence, John Wiley
and Sons, New York.

Ind. Aerodynamics Absiracts, 1, pp. 1-16.
Izv. Atmos. & Ocean. Phy. 2, pp. 695-T04.
J. geophys. Res., 64, pp. 2196-2197.

Quart. J.R, Mel. Soc., 88, PP 57-69.

‘The structure of atmospheric shear flows’, Agard
CP No. 48.
Quart. J.R. Met. Soc., 86, pp. 495-503.
Ibid., 91, pp. 339-344.
Phill. Trans. Roy. Soc. London, A269, pp. 439-458,

Properties of variance of the meteorological variables
at Round Hill', Report No. ECOM-0035-F, Penn.
State Univ.

Proc. Roy. Soc. Lond., 151A, pp. 421-476.
J. Mel., 14, pp. 160-167.
Tables of Bessel function of fractional order, 11.




