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Kinematics of the transport of momentum by tilted troughs
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ABSTRACT. It is shown that in x, ¥ plane, while the direction of tangent to a tilted trough indicates whether
the w-momentum flux is northwards or southwards, the curving or the conecavity of the tilted trough indicates

whether there is convergence or divergence of the momentum flux.

Concavity of a trough towards east indicates

dj\'ergonm of flux and concavity towards west indicates convergence of mementum flux. The magnitude of this
divergence for parabolically tilted trough is given by aversge value of (meridional velocity)? (semi latus rectum

of the parabola).
curve.

= : iz
la).  Formulae are also given for momentum flux and its divergence when the tilted trough is a cubie
Qualitative pattern of the momentum flux and its divergence are given for varigus trough patterns to

enable an analyst to infer the same from a mere look at the pattern on a chart.

1. Introduction

Dynamical importance of tilted troughs was
first recognised by Charney (1947) in the vertical
plane and by Starr (1948) and Kuo (1949) in the
horizontal plane. Permanent shape tilted troughs
consistent with vorticity equation were studied
by Machta (1949) and Arakawa (1953). Several
empirical and theoretical studies have since
shown the importance of these tilts in exchanges
of momentum and energy in the horizontal and
in the vertical directions.

It is known that in a horizontal plane, NE-SW
tilt of troughs and ridges indicates northward
flux of westerly mementum. The present author
is not aware of equally simple quantitative rule
for estimating the divergence or convergence
of these momentum fluxes or their variations in
y-direction by mere look at the tilt. The purpose
of the present note is to give simple rules for
inferring such divergence or convergence of
momentum flux by mere look at the tilt.

2, Tilted trough as a straight line
Let the stream function at an instant of time
be given by

¢ = —a(y) - 4 sin [k (gy—a-t-r)] (2-1)

where a (y) represents any continuous and differen-
tiable function of y. Then dx/3y 1epresents
a zonal current capable of several physically
reasonable variations in y-direction. 4 is a constant
denoting amplitude of the sinusoidal perturbation
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superimposed on the zonal current 2a/3y ; &
is the wave number in x-direction, ¢ and r are

constants.  Equi-phase lines of the sinusoidal

perturbation are straight lines given by
qy—a—+r = constant (2-2)
slope of trough = 1/g (2-3)

We

also have,

]
w=— B2 g cos Hey--24] |
‘f.'l Y (2-4)
v = :Tr = — Ak cos [k(gy—z-7)]
g a_a i - sk 1 ]
7 3 ° u' = —Akq cos [k (qy—ax+7)] ?_(2‘5)
v=0; v = —Akcos [k (qy—z+7)])
u'n' = ) A%y (2.6)
;3 (') =0 (2.7)

If ¢ is positive, the troughs and ridges slope
in NE-SW direction and u'v’ is positive. 1f ¢ is
negative, the reverse holds. In either case,
divergence of momentum flux is zero. This is
a well-known result.

3. Tilted trough as a parabolic curve

Let the stream function be given by

= —aly) + Asin [k {(p/2)y*+ gy—2-+)] (31)
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Then equi-phase curves are given by troughs). However, for the same wave number
(p/2) ¥* + qy—a-+r = constant (3.2) k in x-direction, we can make divergence of flux
Slope of trough —1/(py+-) (3-3) also vary in y-direction by taking
el o ' o § e
V= B yt) b= —a @ sin § b (2 +otrm—atr) |
3%} (W) = 1 4%%p J% (3-4) It is then easy to see that (4.1)
o S ¢ I (Radl
The equi-phase curves are a system of parabolas o AR (2 y ot q') (8
with axis in x-direction and length of latus rectum
=2/p. If p is positive, the curves are concave 2 (w'v') = } A% (ny+p) (4.3)
to the east; if p is negative, the curves are concave a3y B
to the west. P, b
~_(u'v) = } A% 4.4
Since the sign of (3/ay) (u'v’) in equation 392(u i i M

(3.4) is determined by the concavity p, it follows
that parabolic troughs with concave side towards
east are associated with divergence of momentum
flux; those with concave side towards west aie
associated with convergence of momentum flux.
From equations (3.4) it also follows that the
magnitude of flux divergence is given by

@
|3—y—(u v')

(amplitude of perturbation)* (Wave number in z)?
Latus rectum of parabola

__ (maximum value of v')?
~ Latus rectum of parabola

14 Average value of v ]
= ‘semi-latus rectum of parabola (3.5)

The sense of divergence of momentum flux could
be anticipated from qualitative analysis presented
by Yeh (1951) and Starr (1966, p. 20). Here, our
treatment is quantitative.

4, Tilted trough as a cubic curve in y

8o far, the divergence of flux has been either
zero (straight line troughs) or constant (parabolic

The equi-phase curves are then given by the
cubic curves

"t_;yz 1+ 22 4 gy—atr = constant (4.5)

Based on the above analysis, we give Slfet(:]'les
of some tilted troughs (Figs. 1 to 4) indicating

the sign of w'v' and of (9/ay) (u'v') The varia-
tions of (3/3y) (w'?') n y-direction are also
indicated. In each figure, continuous curve
represents the orientation of a trough line. Arrows
on the right hand side of each figure depict the
sense of momentum flux, length of the arrowed
line representing schematically the magnitude
of this momentum flux. Differences in the lengths
of the arrowed lines immediately indicate whether
there is convergence or divergence of the momen-
tum flux. For example, in Fig. 1(a) the momentum
flux is away from the east-west axis of the parabo-
lic trough line with divergence of flux throughout
the region. In Fig. 1(b), the sense of momentum
flux is the same as in Fig. 1(a) but there is conver-
gence of flux throughout the region. In the
eight configurations shown in Figs. 1 to 4, there
is a cusp only in Figs. 1(b) and 3(b). In both
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Fig. 3(a) Fig. 3(1)

these configurations. there ix discontinuity in
the flux at the east-west axis of the trongeh line.
Such discontinuities are generally not seen on the
synoptic charts. Continucus variations wre fie-

quently observed.
5. Extension of results to x, z plane

What has been said of x. v plane above holds
for x. z plane as well; in that case. 4 in the above
formulations has te¢ he H-]ilu.(-l‘ll by =z and @ hy
0.

6. Limitaticns of the stiudy
This study has the following limitations

(?‘)'l’}l.l!:-‘-lll(l_\‘ 15 kinematicrather than {I_.\'ili!-lllil'

in as much as it does not deal with
dynamic forces eausing or maintaining
the tilts amd the fransports associnted

with them.

Fig. 4(a) Fie. 401

(7t) Time variations of the basie flow patterns
have not been hrought under diseussion,
Hence. the study is diagnostic rather.
than prognostic.

introduced  in
component

(#77) Perturbation has  been
the form of & single wave
of which the amplitude does not vary
in north-south direction. Real perturha-
tions observed in nature are far more
complicated.
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