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ABSTRACT. Technique of Fourier serics analysis is used to study linear and non-linear effects on the
instability of a basic state consisting of a topographically forced wave in an inviscid barotropic beta planc model.
It is shown that an analytical study on instability is possible if amplitude of wave like perturbation is either an
even or odd function in space about origin.  The study is carried out in the present paper for former case.

1. Introduction

In a series of recent papers (Charney and Devore 1979,
Charney and Strauss 1980, Hart 1979, Deininger 1981,
Pedlosky 1981), concept of topographic instability and
theory on resonant topographic waves in baroclinic and
barotropic flows are developed. Holopainen (_I97§) has
shown importance and significant relative contribution of
transient eddies in maintenance of horizontal flux of
relative vorticity. Also pointed out by Pedlosky (1981),
the models in the papers cited above suffer from either
severe truncations or assumptions sometimes unrealistic.
It can be argued that truncations or assumptions are
not adopted to simplify analysis of basic vorticity equa-
tion by all the investigators. Imposition of a constraint
is found unavoidable for want of an additional equation
or condition to conclude results from the analysis. The
governing eguation cannot impose restriction on the
field of perturbations that may exist in the atmosphere.

The atmosphere is baroclinic. However, the beha-
viour of a barotropic atmosphere, surely has a mapping
in the baroclinic atmosphere. Hence, a result that is
obtained for barotropic model, should be treated as the
result that provides basic understanding of the physics

involved.

Deininger (1981) used theory of perturbation with
infinite series solution of differential equation to study
interaction between standing and transient eddies in the
barotropic flow in the atmosphere. He proposed trun-
cation to make analysis possible. Although it is pos-
sible to carry out analysis for less restrictive truncation
yet truncation is a must for an analysis. The analysis
would be subjected to criticism for any choice of finite
trupcation. In the present paper similar theory 1s

used for linear and non-linear analyses. However the
analysis, presented here, is more rigorous. It is
believed in present work that interaction between stand-
ing and transient eddies is function of topography and
perturbation. For all type of perturbations that may
exist in the atmosphere, topography need not to result
instability. However, there may exist some perturba-
tions that exhibit instability due to interaction with
topography. Hence, a classification of perturbations is
likely to be possible such that perturbations from a
classified group may result in an instability. Classifying
perturbations in three groups, i.e., wave like perturba-
tions propagating in (kq, /) direction with frequency
A and either an even orodd or mixed amplitude in
space about origin, a linear and non-linear analysis is
carried out for first classification in the present work.

2. The model
The quasi-geostrophic vorticity equation for a homo-

geneous, barotropic fluid on the g-plane can be written
in non-dimensional form as (Pedlosky 1979) :

2 ¥ 2 ¥ 2 §

-1 — ¥ h)=0

( ot ox oy ¥ ox )(V +By-+h)
(2.1)

where ¥ is the geostrophic stream function whose x and
y derivatives give v and -u respectively. The planetary
vorticity gradient is .

If /g is height of the topography then :
h = hpleD (2.2)
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where,

e=U/[fL (2.3)

is the Rossby number and D is the mean depth of the
fluid, U the characteristic horizontal velocity and L isa
characteristic horizontal length. As usual, f, represents
Coriolis parameter. If topography is assumed to be
sinusoidal, i.e.,

I = hysin 8 (2.4a)

where,

8 =kx--1ly (2.4b)

We obtain an equation whose stability is studied by
Charney and Flierl (1981) and Deininger (1981). The
exact solution of this equation is :

Y= _-Uy- Fsind (2.5)
where,

F = hUIN2 (U — C) (2.6)
and

C =P8N ; N2=Kk2 L [2 (2.6a)

Deininger (1981) called solution, Eqn. (2.5), as baro-
tropic topographically forced wave. He used assump-
tion, “The barotropic topographically forced wave will
represent the vertically averaged standing wave in the
atmosphere and the travelling linear. barotropic distur-
bance which develops on the topographic wave will
represent the large scale vertically averaged transient
atmospheric disturbances™ to study interaction between
standing and transient eddies. Proceeding on same lines
we would formulate the non-linear problem.

3. Formulation of non-linear problem

Let @ be the disturbance stream function. Then
sclution of Eqn. (2.1) may be written as

Y=—Uy-4Fsing-}- @ (3.1)

Substitution of Eqn. (3.1) into Eqgn. (2.1) using Eqn.
(2.6) yields the equation for perturbation stream func-
tion. It will be:
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where we have neglected higher order perturbation
terms.

We would look for a solution of the type :

ic\
D =exp(iAf) > P, exp(if,) (3.3)
ey
”n
where,
Bm o km-“ TL Im.l’
(ki) = (Koo Ig) -1 m (k. 1
and m takes values in the set of theintzger:, The solu-

tion is similar to solution assumed by Dzininger (1981)
cxcept that he has chosen P_,,—0 for m e N. Our solu-
tion will be a physical solution if complex conjugate of
Eqgn. (3.3)is also a solution of the Egn. (3.2). Further,
a condition, the chosen solution resembles a progressive
wave moving in direction (ky, /) and having amplitude
that is an even function in space about origin, will be
imposed on the solution. Under the condition, we will
have :

P_w = Py (3.3a)

The recursion relation can be obtained by substitution
of Egn. (3.3) into Eqn (3.1) :

hcd Jm I 'Pm Ly (/\R,,, e km J:u) .P,,, T

- hod Sy Py = 0 (3.4)

where,
d = (kly — iky) | 2N2(U —C) (3.5a)
Ju=URn—B (3.5b)
R = k? + Iy? (3.50)

Substitution of condition (3.3a) for all values of m, in
(3.4), we obtain :

hﬁd JH??!'F 1 Pm—l "'l" (AR—-m _-'" k-—m J—-m\) Pm T+

+ hod J-—rar-l Ppty =0 (3.6)
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with
}‘od U] + J—-]) Pi- U‘Ru + JL"u Ju)Pu =40 (3-7)

where (3.6) is valid for m=1. Simultaneous solution of
(3.4) and (3.6) provides required recursion relation:

(AAm + Bm) Pm + hod Cm Pm—-]. = 0 (3 8)

where m=1 and

A, = Ry J_ oy — Ry It (3.9a)

By, = e Fii Tmimyi— K T Tt (3.9b)

Co=Joqg Ty = Ity Tt (3.9c¢)
For m=1, the recursion relation (3.8) becomes :

(Ady + B) Py + hgd Cy Py = 0 (3.10)

Simultaneous solution of (3.7) and (3.10) is used to
obtain value of A through equation :

Ay Ry A2 - (Ry By + A ko Jo) A+ [Bi ko Jg-—
—hg?d* (Jy + J_ ) Cij =0 (3.11)
Then for instability to occur :

(RIIBI - Al ku-In)?' J‘ 4 hﬂl')d"' (J:LLJ_l) A |C|Rn {0

(3.12)

A necessary condition for instability to occur is :

Ji+J-)A CR<0 (3.13)

It can be shown that inequality (3.13) correlates possible
values of C/U and N,* /N2 for instability to occur.
Here, N,? is defined :

Ne* = ko* + I? (3.14)

Further, the mountain height must also exceed a critical
value /i, for instability to occur where,

4d2 4, C, Ry (Jy + J_1)

he— _—(RoBi—AikeJy?* (3.15)

Now let topography is slightly higher than the critical
value by a small amount /\, (Ag<< <<h,), we have

he =h — Ag and Ay = Ak, (3.16)

We also observe that growth rate of perturbation is
proportional to [Aglt. The result is similar to that

obtained by Deininger (1981). The Eqn. (3.2) with use
of (3.16) yield :

2 2 P
(3 +vge) 7o ta+

NU-C) oy ox

X (U724 B)P =0 (3.17)
4. Non-linear analysis

The Egn. (3.17) is a complex partial differential
equation. We would deal with this equation by a
mathematical trick. Let us denote growth of perturba-

tion by :

A2 =24 (J,+J1) Cio A b4, Ry 4.1
We write (3.2) with (3.16) as :

(014 AO) P =0 4.2)

where operator O, is written as :
8 7 8, hecosf
01 - ( -1- U_-af ) vt ﬂ ax + N2 (U—'C) X

o

x(ka - T

s NCALE Y D CR )

and operator O, is written as:

h,cos @ ) [
OQEWEW_—C) (kg— 1"3;) Uv:+p 4.9

Before an attempt is made to develop solution further,
it would be useful to discuss the result obtained so far,
It is shown that (3.3) is a solution for disturbed stream
function to obtain the stream function (3.1) of non-
dimensional vorticity equation (2.1). With given para-
meters and conditions of the problem, the disturbed
stream function exhibits a growth provided mountain
height exceeds a critical value /.. Becausc. solution
(3.3) is valid for any height of mountain, the set of solu-
tions can be divided into two subsets. One would cor-
responds to stable solutions for h</, and other would
corresponds to solutions for h>h, that exhibit growth.
It would be interesting to study behaviour of solution
when an appropriate expansion for @ can balance weak
effects of non-linearity and instability. Such a study is
feasible under assumption (3.16) by expanding disturbed
stream function :

¢=‘pg + AQI + A%ﬂ—*_ """

and equating equal power of Ain(3.17). It is natural
to ask whether such a procedure would assign restric-
tion on magnitude of A. The answer would be negative
if solution is obtained in principle and @; is shown to
be taking finite value in the interval but would be affirma-
tive in practice. Such a study would be useful only if
expansion of @ can be truncated after a few terms, Tt
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is believed thatif| A 0,l<<<|0,|. only a few terms would
be required to be mcluded in the expansion of @. The
decision to assign a upper limit for values of  would
depend upon the requirement of the problem under
consideration. However, it can be expected that a better
choice of A would be that which makes order of term
involving A, least in comparison to order of other terms
of the governing equation when a scale analysis is carried
out. Now, a solution of Eqn. (4.2) is obtained if it is
possible to solve, for D, @,,. .. the equations :

0Dy, =10 (4.6)
0P =—0,Di~1 Vj:ijeN 4.7
Let us look for a solution of the type :

Dy=exp(iA7)ZP,Jexp(ib,) (4.8a)

Dy = exp (i Ar) ZP,, exp (i6,) (4.8b)

where,

P,=Plexp(— A, 7)
The choice of solution (4.8) is similar to that of (3.3)
except that A and coefficients P,i’s are complex num-
bers in general. We observe that operator O, is similar
to the operator that appeared in (3.2). Hence, we solve
Eqn. (4.6) by using results that are obtained in the pre-
ceding section for a solution of (3.2).

A= — (Rg Bi + Ay koJy) |24, R, 4.9)
and

(‘\ A + Bm) -Pm T hcd m m-—l =) (4”))
Further, substitution of (4.8) into (4.7) results in a

recursion relation :
hcd Jm"—l P j 'L (ARm ‘T k Jm) P4

"L h d Jn—l Pm‘—*l f“j-l (41 I)

where,
fmj_l = —d (Im" 1Pttt - an-'l Pm—-l“‘;_l)hf 4.12)
Condition, P,,=P_, may be imposed on solution as

imposed for linear analysis. The procedure adopted in
the preceding section results in recursion relation :

(Mm '_L Bm)ij o hf:d Cum—lj =
dcmhc .m-*-l'i_l (413)
\_vhere m=1. Further, we obtain a simultancous condi-
tion :
hd (Jy - J_q) Py ( ARy -+ koly) Pyé =
T—-f!(Jl-]‘J_l)Plj_ll?c (4.[4)
Now let
A=A i), (4.15a)

Pni= P, i+ iP,J

(4.15b)

for all values of m and j such that m=0 and j=0 All
P,.J. P, are real numbers. The subscript r refers

to real part and c refers to complex part. Because, both
operators O, and O, are Hermitian operators :

O0\P;* = —0,P; _* (4.16)
is the condition, so that relations (4.8) can be treated
as physical solutions. Here an asterisk denotes complex
conjugate. The condition (4.16) requires validity of
Eqns. (4.11) to (4.14) on equating real and imaginary
parts separately, Under the constraint, it may be
shown, from (4.13) and (4.15), that

. 1 - ( ’\r Am 7{’ Bm Am '\x ) (-Pm?l'f ) —
"Cm "‘c Am A Am J BH’I Pm!pj
o IT(‘ ( Pm—-l‘rll 4+ Pm—'t!r ) (4-]7,]
Pm—l 1) =3 -+ Pm—hr”

The value of Pi.. Pi.. Py, Py can be obtained
from a simultaneous solution of (4,13)and (4. 14) under
(4.8). (4.15)and (4.16). We may write in matrix form :

1 [ P/ )
!r A![ - f:z i 1 PI J .
| o | sty
| My M | L Pl
L "L Ped )
_i—1
rﬁfai 0 | F?Z )
T | 1 P“‘f‘?_l i (_4.]8]
0 M, ’ I>¢
5 J [ P11 )
where,
Ady 1 By hed C
t’l == .
My (/l'fd (i +J—) AR+ I"OJo) (4.19)
v — (A 0 ) .
o ( 0 ’\u: -Rﬂ. ’

“hgdC|) (4.20)

0
My =
! (—dhc(-fl Ly 0
It can be shown that the determinant of the square
matrix that appear in (4.18) is non zero. The relation

(4.18) can be solved to obtain unique value of P,J and
Pyi. The value of P°, P can be obtained from (4.8c).

5. Solution analysis

The time dependent topographically lorced wave solu-
sion (2.5) for non-dimensional vorticity equation govern-
ing the barotropic motion of a quasigeostrophic, inviscid
homogeneous fluid on an infinite beta plane, bounded
in the vertical direction by an upper flat horizontal plate
and by a lower corrugated plane to act as a sinusoidal
topography was known. The solution exhibits a singu-
larity in which case the Doppler shifted wave field would
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be stationary relative to topography. What would be
influence of topography on a perturbation 7 A detailed
study on past attempts 1o search an answer to the ques-
tion, reflects a necessity for truncation or assumption
on solution to obtain some definite results. The lesser
number of deduced algebraic or differential equations
in comparison to number of variables is a basic cause
for the necessity. It is assumed in this paper that a
perturbation is a progressive wave withspace dependent
amplitude. Further, the amplitude is assumed to be a
good function for Fourier series analysis. Such a func-
tion can always be written as sum of an even function
and an odd function. The constraint on the amplitude
to be either an even or an odd function of g can be used
to avoid necessity of truncation (Deininger 1981) to
obtain a disturbed stream function. A linear combina-
tion of these solutions would also be a solution because
perturbed vorticity Eqn. (3.2) is a linear equation.

A review of Eqn. (3.15)shows that value of critical
height for instability to occur depends upon value of
kg, k, Iy, 1and U. It may be possible to assign a value
to these parameters so that instabil§ty occurs for any
finite height.

The time scale used to derive (2.1) is the advective
time L/U. The result of Charney and Devore (1979)
suggests that development occurs on the longer time
scale L/(UAY €). The growth rate of the perturbation
is proportional to A¥ as evident from (4.1). Hence
it is in longer time scale 7. The non-linear analysis may
be carried out in two different ways. One of the ways is
replacement of time operator /ot by afat--A¥a/eT
in (2.1) with assumption on Fourier coefficients to be
dependent on 7. The other way, that is also adopted in
the present work, is an assumption of higher order
solutions similar to that solution which may have been
obtained but for physical constraints on the solution.

6. A comparison with past studies

The present work is an extension of work carried out
by Deininger (1981). The present work differs to that
of Deininger (1981), Charney and Flierl (1981) etc in
choice of possible solution of problem for the perturbad
stream function. The past studies have looked for the
solution when m in (3.3) takes value in an interval (0,00).
The present work has assumed a generalized solution
in which m takes value in an interval (—00,0).

The past works suffered either by an assumption on
the model and physics involved or by the method of

truncation that are to be applied on the solution in order
to obtain a close set of algebraic equations and hence,
definite results. The present work is free from such,
assumptions and limitations.

The growth rate of perturbation is found to propor-
tional to |Alt. The result was also obtained by past
investigators.

Deininger (1981) result speaks about a minimum cri-
tical height, non zero for normal flow, for instability
to occur. The present work, (3.12) and (3.13) shows
that linear instability may occur even for negligible
value of mountain height.

The solution chosen by past investigators, (3.3) with
or without a restriction on m to be positive integers,
mean physically that topography causes simultaneous
existence of infinite waves in addition to initial wave in
direction (ko ;) with same frequency but different
wave numbers. However, chosen solution, (3.3) with
condition (3.3a) mean physically that topography would
only make amplitude of initial wave space dependent.
Hence, the present work is in conformity with our under-
standing of acoustic and light waves.

7. Concluding remarks

In this paper, the linear and non-linear evolution equa-
tion were obtained which govern the interaction between
a topographical forced wave and its weakly unstable
perturbation. The work is carried out primarily on the
lines followed by Deininger (1981). The analysis is
valid for an even disturbance stream function, On the
same lines, an analysis can be carried out for an odd
stream function. With that, solution would be com-
pleted for disturbance stream functions which are good
functions for the Fourier series analysis. Convergence
of P,’s can be shown easily on expansion of (3.10).
The results obtained in the paper are general except for
the choice of basic equation. The right hand side terms
of (2.1) differ to that of Pedlosky (1981), hence effect
due to external vorticity source and dissipation of vor-
ticity due to the action of Ekman layer are neglected in
the present paper. Extension of this analysis to baro-
clinic model is under progress.
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