Mausam, (1985), 36, 4, 441-446

551.465:551.510.62

A review of computational techniques in flow

network models®

R. P. TEWARSON

State University of New York

Stone Brook, Long Island, New York 11794
(Received 2 April 1981)

HIC — TH W13 T4 H S92 ST GHETEA § Ga0F He § STt &% arorerg veirtest o faeme e R mn
Flequm § 49 aveAT AT awenrs| d fazm & fad adrw, A Aer AW anm e AagAwr 91 W fan
g | waAfmeife mwosdi F Wil B AWA gAT ATl A91 @Efen (awdml #0 Reram, o
qifie AN SEGT AT, FERT T (RN AT | AT ST § /F GO 41 g F qA A v wA  fqq
foraut &A1 T S8 TUAT HA AT £ | 7 SR (AR T & ) SEw St 7 fame A S #1 ot fEar s f
AT T FIH AT TN TG AT G A LA T H A S 2

ABSTRACT. Several computational algorithms which have been found useful in the computer
simulation of flow network problems are discussed. The emphasis is on accurate, fast and low-cost
methods for handling large structured problems. In the case of underdetermined problems, the imple-
mentation of smoothing and related techniques that yield a class of desirable solutions is described.
It is shown how the model structure has been utilized in the solution process 1o save computer storage
and run time. How the sccuracy of the numerical schemes has been improved by the use of splines

without disturbing the sparsity structure of the given system is also discussed.

1. Introduction

The flow network problems consist of a set of tubes
which interact transmurally with a common environ-
ment while the direct tubal flow outputs of some tubes
arc the inputs for others. The mathematical models
of such flow networks require the numerical solution
of a system of highly coupled stiff differential equa-
tions with multipoint-boundary conditions. Shooting
methods for the solution cannot be used due to the
intricate connectivity of the tubes and the environment
and, therefore, global finite dilference techniques have
to be used. In most cases this requires the solution of
large systems of non-linear algebraic equations. How-
ever in order to achieve a realistic computer simulation
of a given flow network, it is necessary to have fasl
and accurate methods which lead to small discretiza-
tion errors and require the solution of non-linear equa-
tions of reasonable size.

In many cases, due to experimental constraints
enough information about the model is not available.
For example, one can only sample at the end points
of the interval of interest, or cost and hardware make
it impossible 1o get enough data as in satellite remote
sensing, picture reconstruction, oil exploration. In these
cases the problem is under-determined, If it is known

that the desired solution is smooth, then we can use
the Sobolev type norms in the solution process to
obtain unique solutions,

In the next section, we dascribe a simple model
and the related differential and algebraic equations. In
Section 3, computational methods are given. These
methods make eflicient use of the model structure in
the solution process. The given set of equations is
partitioned into the so-called basic and non-basic vari-
ables and equations, Using the non-basic equations,
the non-basic variables are expressed as functions of
the basic variables, These values of non-basic vari-
ables are then substituted in the basic equations and
this procedure results in the basic equations being
expressed as functions of only the basic variables.
Gaussian elimination, Implicit Function Theorem or
Quasi-Newton type methods are then used to compute
the Jacobian of the basic equations as functions of
basic variables.

The partitioning of the equations and variables into
basic and non-basic sets is done by proper ordering
of tubes and the compartments within each tube, The
order is usually determined by the direction of flow.
Generally speaking, the environment (also called the
bath) and some other critical tube variables and
equations are taken as basic.

*The paper was presented in the symposium “Indo-French School on Recent Advances in Computer Technigues in Meteorology, Bio-
mechanies and Applied systems’ | held at Indian Institute of Technology, New Delhi, 4-13 February 1980.
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The whole model can then be expressed in tcrms
of these basic equations and variables. The net result
of this transformation is that the basic equations are
solved less often than the non-basic ones. In the case
of flow network problems, connectivity matrices of
the non-linear algebraic cquations resulting from box
difference schemes which use the Trapezoidal Rule
are of doubly bordered, overlapping, block diagonal
forms. The non-basic equations and variables corres-
pond to the overlapping block diagonal forms and the
basic variables and equations are associated with the
borders. Clearly, the solution of basic equations for
basic variables is casy.

In addition to making use of the model structure
in the solution process, we also need high accuracy
in the finite difference approximations. Very small step
sizes are ruled out since they lead to unwieldy algeb-
raic equations. Therefore, it is shown in Section <
that instead of the Trapezoidal Rule, higher order
methods like the corrected Trapezoidal Rule, Cubic
and Fifth degree overhang, can be used. The usc of
these leads to higher connectivity in the algebraic
equations, This is handled by using a deferred correc-
tion type approach; the terms leading to additional
connectivity are moved to the right hand side and
then an iterative scheme is used, We have found
recently that highly accurate Euler-Maolaurin type
integration formulas can be used if the derivative terms
are computed by using splines. The increase in connec-
tivity is handled as indicated above,

Finally. in the last section, we will review some
methods that make use of spline programs to deter-
mine smoothing matrices which arc then used to imipose
the necessary smoothing restrictions on the solutions
of underdetermined problems.

2. A simple flow network

Let us consider the network shown in Fig. |
(Pinter & Shohet 1963 etc). Fluid enters under
pressure at the tops of tubes 1 and 3 after flowing
in the directions indicated by arrows in the figure
exits from the top of tube 2 and the bottom of tube
3. The bath, which is labelled 4, has an overilow so
that its volume remains constant. The walls of the
tubes are semi-permeable and therefore some part of
the solvent and some of the solutes permeate and/or
are pumped in or out of the tubes to the common
bath.

Let us define the following :

x : normalized distance measured from the top of the
bath (x=0 at the top: x=1 at the bottom)

Fori=1.2,3.4 and p=1,2,3. 4
yip (X) @ axial flow, p#4.

: pressure if p=4.
1, : transmural flux

- (o)

Then the differential equations are

djﬁ;fﬁ =f ( X, y(x) )

vector with _r,p{.\') as com-
ponents.
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Fig. 1. A simple flow network

with the two point boundary conditions
L (_1'(0).« y (1) ) = 0

where L is usually a linear operator.
fluxes are connected by the equations

The transmural

./.i.n (x) + Fap (x) =0
r
The above equation and (2.1) can be used to replace
the differential equations for the bath by the algebraic
equations
3

el
2 Pipx) 4= vy (x) = 0,
i=1
which on integration yield
3
L}
> ¥ip (x) + yylx) = consiant.
Lt
i=l
In order to solve (2. 1) we first let
h=1n xs=h, j=0, L,2,........ .

Vi = Yin (X5) and fi = f,-,,(.\_,-, » (.\‘i-)),

then for p#4, integrate (2.1) to get
xj

= |t (_‘,r_‘_‘(_\-))d.\’ —0. (2.4

Xj—1

Vips j1

If the integrand in the above equation is evaluated by
:he well known Trapezoidal Rule (TR) and we let

tﬁ;,,j Vipi — Yipsi—1 — (h.".z}(fi,uj =1 ./.ijlsj- AP 4,
(2.5)

then in view of the fact the TR has an 0 (A3) error, we
have

$ipi + Oh3) =0, p#E4 j=1,2, c0.oitt
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Now from (2.3a) it follows that

3
E .}i}".} “+ _]'_“,}' = constant.
i=1

If we let

3
bapj = E 0".'}71 — Yipsj. ‘l] Y=Y p 50

i=1
then evidently

=0
454”
Since L is linear, some of the variables yipo and/or
v, are either given explicitly or as functions of the
tPn

other variables. This leads to only as many variables
as there are Egns. in (2.6) and (2.8), viz,,

i ; .
1,6n for the model under consideration.
Now if we let

(2.8)

), i # 4

ipl

“ ('ra‘;'j)' 8=1{¢

B = (,r”,j), P = (<;6m.)-
then neglecting the 0 (h3) term we can write (2.6) and
(2.8)as

f(a,B)=0 (2.9a)

U (aB) =0 (2.9b)

In the next section we describe the implementation
of Newton's method for the solution of (2.9). This
method has turned out to be the best of a large class
of problems (Stephenson et al. 1974 etc).

3. Computational considerations

It turns out that 8 (a, B) = 0 is easy to solve for a

for a given value of B because due to the struc-

a6 )
ture of flow network models s is an overlapping
o

block diagonal matrix, then we can write a=T(B)
suchthat 8 (T (8), ) = 0.

Substituting this in (2.9b), we have
y(T(B)LI=0 (3.1)

and this is now solved as a function of only B. One
can use the Gausian elimination, Implicit function
theorem or a quasi-Newton method to solve (3.1)
(Juang 1976 etc). The use of these methods has led
to great savings in computer costs and made it possible
to have comprehensive and realistic simulation of renal
concentrating mechanism. Convergence and uniqueness
properties of models of this type are discussed (Kellogg
1975 etc).

The partitioning of variables and equations on the
basis of complexity and model structure is useful in
many diverse modelling situations,

Large systems are broken down into a number of
small components for conceptual and maodelling pur-
poses. In most cases, it is physically impossible for
each component to interact with all the others, as the
following examples show: in a large company the head
office interacts with each branch office but the latter
interact with only a few others; in an ccosystem each
species interacts with a common environment but with
only a few other species; in hicrarchical systems, each
component reports to and is instructed by the next
level of command.

In cach of the cases mentioned above, it is easy to
ascertain the component which basically determines
the whole system. The variables and equations associ-
ated with these components are called critical, basic,
important, sensitive, global or leaders, bosses, trouble
markers, etc. The remaining variables and equations
are labelled non-critical, non-basic, unimportant, depen-
dent, local or workers, followers, etc.

In some systems it is not easy to determine the
basic components. In such cases, graph theoretic
methods that include the model structure or numerical
methods using the domain of attraction and conver-
gence rate can be used to determine a basic set of
components.

The determination of basic variables and equations
is very closely related to the following practical ques-
tions. Where to make a finer grid and/or make more
accurate measurements when studying the global inter-
action of air currents, temperature and pressure for
weather forecasting? What are the critical finite ele-
ments so that disection methods can be used in
designing bridges and other structures? How to find
the points of attachment for partitioning and tearing
electrical and other network? What are the critical
areas in diffusion and transport problems (water puri-
ﬁca)ti;m. renal modelling, nuclear reactor simulation,
etc) 7

The separation of the variables and equations into
the ‘basic’ and ‘non-basic’ categories has been called
decomposition, splitting, partitioning, tearing, disection
and/or modification.

For example, according the Rheinboldt (1975):

“

in the analysis and design of clectrical
networks physical considerations usually allow a

decomposition of a large network into smaller com-
ponents; in large-scale control problems multilevel
approaches are often introduced: and in linear or
non-linear programming, decomposition techniques

have long been the key to the solution of surpris-
ingly large-scale problems.”

_ “When no effective decomposition is found, that
is, when one or more of the subsets of equations is
still at large, it is often possible to gain some im-
provement by a tearing approach.”

“Tearing by inspection is often performed in
practical applications. For example, large structyral
problems are usually broken down into sub-problems
and so-called super-clements are introduced which

model the behaviour of separately anal zed .
nents,” d d d compo
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Applications of decomposition techniques in electri-
cal network, heirarchical and multigoal systems ¢nviron-
mental problems, linear and nonlinear programming
are discussed in detail in (Himmelbau 1973), where,
?mong other things, Himmelbau observes in the pre-
ace:

“Probably the fundamental underlying idea that
evolved at the conference was that a large complex
system representing interacting clements could be
I:lroken down into sub-problems of lower dimension-
ality.”

On page 4, in discussing ‘structure and sparsencss’,
he writes :

“Tewarson (1971) illustrated a number of struc-
tures (the occurrence matrices) for A, that might
be obtained by partitioning or permutation, uand
would generate a minimum number of new non-zero
elements during the forward phase of the elimina-
tion”,

Robertson (1976), in connection with the numerical
solution of stiff ordinary differential equations, ob-
serves:

% . . if the slower variables were at any time
clamped (i.e., held fixed), the fast responding vari-
ables would quickly tend towards and remain at
equilibrium values. System of equations having these
properties arise in a variety of applications, inclu-
ding chemical reaction kinetics, particularly where
very reactive intermediate species are produced,
guidance and control problems, electrical trans-
mission networks, and heat and matter transfer.”

An excellent survey of

« preordering technigues with particular
emphasis on partitioning (to block triangular form)
and tearing (to bordered triangular form).”
is given by Duff (1976).

Steward observes that partitioning and the tearing
approach of the precedence matrix is the basis for
organizing engineering work. Steward’s method for
tearing is described in Tewarson (1977). Sargent
(1977) gives an algorithm for decomposing large-scale
computing problems which have a network structure
and sparse systems of algebraic equations.

Partitioning and tearing is the subject of the follow-
ing papers:
Bunch and Rose (1974) :

“The computational complexity of partitioning
sparse matrices is developed graph theoreticaily. The
results are used to study tearing and modification
... arithmetic and memory costs are considered.”

Tarjan (1976), where two graph theoretic partition-
ing methods are given.,

Duff and Reid (1976) :

co..an implementation of an algorithm of
Tarjan (1972) for symmetrically permuting a given
matrix to block triangular form™.

R.P. TEWARSON

Bunch (1976), where

“Graph-theoretic techniques for analysing the solu-
tion of large sparse systems of linear equations by
partitioning and block metheds...... B e e
are developed.

Sangiovanni-Vincentelli (1976), which has a heuristic
algorithm for getting a (bordered) lower triangular form.
More recent work on this topic is given in Nepomia-
stchy (1978), where the border variables are called ‘loop’
variables.

Cheung and Kuh (1974), where

the problem of transforming a non-singular
matrix by symmetric permutation to an optimal
bordered triangular form v

is solved. Additional comments on this paper and
some uses are given in Kevorkian (1976) and the
determination of numericaily stable pivots is described
in Kevorkian (1976).

Disection, splitting and modification are described
in the following papers

. BirkhofT and George (1973), where it is shown by
an example how reordering can make it a doubly bor-
dered block diagonal form and

a precise recommendation for the choice of
disection scts for George's (1973) nested disection

is given. Furthermore,

experimental comparisons with the minimal
degree algorithm of Markowitz (1957).”
are also given.

Concus et al. (1978) where it is shown how to

£ s silind wid split the original discretized operator into
the sum of two operators, one of which corresponds
to a more easily solvablz system of equations, and
accelerate the associated iteration based on this
splitting by (nonlinear) conjugate gradients”.

and to make usz of the Block Successive Over-relaxation
and Cholesky factorization in algorithms which appro-
ximate the Jacobian by an operator that is compu-
tationally easier to invert.

Stone (1968), Buzbee (1976), Tuff and Jennings (1973),
Jennings (1977) and Kershaw (1978), where the
easy part is factorized once and for all and iteration is
used to take care of the difficult part.

Most of the above mentioned papers do cite examples
or mention the applications of sparse nonlinear equati-
ons. Some additional examples are given in Porsching
(1976), where a varicty of source problems which give rise
to sparse nonlinear equaiions are mentioned. Applica-
tions in computational circuit design and partial differen-
tial equations are given (Rose & Willoughby 1972).
Computer aided network analysis and design is discussed
by Hachtel et al. (1971). Equilibrium flows in a network
are mentioned (Porsching 1969).

4, Methods of higher accuracy

Instead of the Trapezoidal Rule, higher order
integration formulae can be used in (2.4) to
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Xj
evaluate ff (x, y (x)) dx. These lead to smaller
i

xj—-l
errors but with some decrease in the sparsity of 20/2a.

We first briefly describe some of these schemesand then
show how a deferred correction type approach can be
used to overcome the sparsity decrease (Tewarson 1978).
Let us drop the subscripts i and p, and let

Xy
= f f (,\-, ¥y (x)) dx

Xj—1
then we have the following :
(a) Corrected Trapezoidal Rule
n j2 . pr -’ 5
I= 2 5+ ) =2 (= 1 + oo,

(b) Cubic overhang method

h

I'= g (—fica+13fim1+ Bfj—fir )+ 0 (#).
(c) Simpson's Rule
=2 (s 1 fn) 0 (),
Hermite interpolation on  y;, 31, 3%, and »%_; is

used to get y;j_1/2, which is then used to compute f;_y/>

(d) Quintic overhang method

I is a function of fj 31k = —3,—2, —1, 0, I, 2,
and theerrorsare 0 (h7).

(€) Euler-Maclaurin tvpe formulae
h h2 ,
I'=—5Uit+fi-)— 5 Fi—S'-)
hs
— 120 U5 +"i=1) + 0 ().
The derivatives f* and /" can be computed by cubic

or quintic slines or directly by differentiating /.

(f) Optimum formulae using the y and f values
One such formula is

2
Z @+ Vit — byt pfy1) =0

p:;-—]

The coefficients a;+, and b;., are chosen to such
that " =f and Taylor’s theorem lead to the
least error, viz; 0 (h®).

. i of
There is no change in the structure ofTi when (a)
o a

or (c) replace the Trapezoidal Rule. On the other hand
the, use of (b), (d), (e) and (f) leads to significant

26 : -
decrease in the sparsity of -;;.Thls can be alleviated
C
a0rr
“ 3« nplace of

by writing 0 = Oy -+ 0o and using

o6 ;
55 This slows down the convergence but under

proper conditions, which are usually fulfilled in practice.
converges reasonably fast (Tewarson 1979.) In view of
the above facts, evidently the methods described in the
last section for the Trapezoidal Rule can be used with
advantage. Computational experimentation has shown
this to be the case.

5. Use of splines to compute smoothing matrices

In many cases the system of nonlinear algebraic equa-
tions (2.9) may be underdetermined and/or only smooth
solutions are of interest (Tewarson 1977). Then we
have to solve ¢ (y) = 0 with the constraint that yTWy is
a minimum, where W is a smoothing matrix associated
with a Sobolev norm of the type

n

]
12 N |4y
Wyl = drv | x=x;

y=0 _f= 1

(5-1)

The W matrix can be computed efficiently by the
spline routines as follows (Tewarson 1979)

The spline programs have f; as input and [f'jas the
initial computational result.

Thus
f’ = Bf 4+ 0 (h%
f=(f) and f=(f.

The matrix B can be easily determined from the program
since

(5.2)

where

df’
B="45
The second derivative is computed by a spline on spline
program and therefore

["=Bf" = B[+ 0(h)
It follows from (5.1)~(5.3) that
W =1+ B"B 4 B"R2 |0 (h2),

and if quintic-splines are used then the error is of
0 (h3).

(5.3)

In this paper we have given a brief review of various
computational techniques that have been found useful
in solving large scale flow network problems that arise
mainly in renal modelling. Most of these techniques have
been used on test problems in the published literature
from other areas with excellent results. The overall
aim in modelling large systems is to be able to get fast
and accurate soutions without an inordinate expenditure
of computing time and storage. We have attempted
to show some of the recent efforts made to achieve this
aim,
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