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ABSTRACT. The paper presents development of recursive self-adaptive prediction algorithms
called the self-tuning prediclors using some common estimation techniques and their application to
prediction of flow discharge of river Tigris at Baghdad, Iraq. Four kinds of predictors, namely, the
least square predictor, the minimum variance predictor, predictor using stochastic approximation and
a two stage predictor have been developed. Using available data for the river Tigris. prediction results
have been obtained for average daily discharge, average monthly discharge and average yearly dis-
charge. In each typt of prediction, a number of models have been tried. The various prediction results

are presented graphically and in tabular forms for comparison,

1. Introduction

The application of modern recursive estimation tech-
niques, such as least squares and Kalman filtering (Grau-
pe 1976) is well known in the areas of communicat:on
and control. In communication, the techniques are used
generally to filter out signals from noisy informations.
In control, these are used normally for state and para-
meter estimation of various processes to be controlled.
In the recent years researchers have also used these
techniques to solve the problem of modelling and pre-
diction in other areas, such as educational system
(Sinha and Singh 1973), weather process (Sinha and
Sharma 1975) and river lows (Rao and Kashyap 1974)

In the present paper, the authors have tried to use
a unified approach to the problem of recursive predic-
tion in such processes by developing four self adaptive
prediction algorithms called the self tuning predictors
(Wittenmark 1974) based on some common estimation
techniques like the least square, minimum variance,

stochastic approximation (Graupe 1976) and two stage
estimation (Prasad, Sinha and Mahalanabis 1977)
algorithm. These have been used to process real flow
discharge data of river Tigris at Baghdad (Iraq) to obtain
three kinds of predictions, namely, the average daily dis-
charge prediction one day in advance the average mon-
thly discharge prediction one month in advance and the
average yearly discharge prediction one year in advance.
The models developed are stochastic difference equations
with or without deterministic input terms and also
with sinosoidally varying terms in some cases to take
into account the periodic nature of the river flow data.
The approximate model orders are obtained by ordinary
auto-correlation and cross correlation tests (Sinha
and Sharma 1975) and the models are validated by
obtaining the error of prediction.

2. Predictor algorithms

In this section we consider the problem of prediction
of a process variable, such as river flow discharge and
develop various kinds of prediction algorithms.

*The paper was presented in the Symposium “‘Indo-French School on recent advances in Computer techniques in Meteorology,
Biomechanics and Applied Systems™ held at I.LT., New Delhi, February 1980,
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it is assumed that the river flow process is represented
by the following discrete time linear stochastic difference
equation model :

mn m

(k) = Za.-_r(k,i) + zb_,- u(k — j) —e (k) (n
i=1 j=1
where, k=0, 1, 2.... represents a sampling period of

either a day. a month or an year depending upon the
type of data, y(k) is the average flow discharge during
kth period, u(k) is the measured average rainfall in the
entire catchment area during kth period. e(k) is a ran-
dom sequence representing the modelling error and
disturbance inputs and a; and b; are the unknown
coefficients of the model.

The one step ahead prediciion of y(k) is defined as the
A
conditional expectation y{k/(k—1)} given by
A
5 [k —1)] = E{@O3(1) - otk

If e(k) is assumed zero mean, using Eqn. (1) this is
given by :

¥ [k/tk—1)] =§_,f}; yk—1) - ‘ij uk—j) @

i=1 j=1

A )
where ¢; and b; are some estimates of the unknown
coefficients. There are various estimation methods exis-
ting in the literature (e.g.. see Sage and Melsa 1971)

which can be used to find out the estimates @; and b,
on the basis of observed data. Eqn. (2) will then be
called on ‘Offline predictor’.

A ‘self tuning predictor’ is defined as a set of re-
cursive algorithms which makes use of the observations
online to yield the predictor parameter estimates and
the predicted output simultaneously. A block diagram
of a selt-tuning predictor is shown in Fig. 1 and the
algorithms are described below:

It is simple to show that Eqn. (1) can be rewritten
in the following form :

y(k) = h(k) 8(6) + elk) (3)

where,
h(k) = [ytk — D ¥tk —2).... vtk—m)u(k — 1)
cou(k — m)y|

and 8(k) = [a1 a2...q;, by br...b, )7

Taking the conditional expectation of both side of Eqn.
*(3). and assuming e(k) to be zero mean. the predicion
equation is given by :

.'\ A .
ik f(k — D] = hik) Blk/(k — 1] (4)

where, 8{k/(k—1)} represents the predictor parameter
estimate.

For constant parameters it can be seen that (since
6(k) —= 8k — 1))
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Fig. 1. A block diagram of the self tuning predictor

Let the error of prediction be defined as

Tlkik — D] = yky yIkik—D1  (6)

The parameter updating algorithm is then assumed to
be of the following recursive form :

Bk K) — 0 (k— 1)k — 1)+ Kg(k) ¥ th/(k—1)} (7)

where K8(k) is a gain term. Selection criteria for this
gain term defines the types of self tuning predictors des-
cribed below :

(i) The Least square predictor (L.S.P.) — Selection of
Kyg(k) is based on minimization of J, where
Jp = E1¥ (kitk — D)P (8)
The gain expression for the above least square criterion
is given by :
Ko(k) = A(k—1) hT(k) [h(k) Atk—1) hT(k)+1]71 (9)
where, Atk — 1) = [H" (k — 1) H(k — D!

The matrix H(k —1) is a matrix formed by initial (k—1)
observation vector [A(1). A (2)....h(k-1)]. The recur-
sive formula for updating the matric A(k—I1) is given
by :

ARy = Ak — 1) — Kg () h(k) Ak — 1) (10)

The set of Eqns. (4), (7), (9) and (10) from the algo-
rithms for least square sell tuning predictor.

(it) rht_' minimum variance predictor (M.V.P.) —
The minimization criterion is the variance of para-
meter estimates given by

Tyt — E[00))— Ok fck — 1))] T6K) — Bk [k — D)7
(1

[t is assumed that the noise sequence e(k) is zero mean
white Gaussian with a corstant variance R. Then
treating the following relation

a(k) — Bk — 1) (12)
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as the state equation and Eqn. (3) as the observation
equation, Kj (k) is given by the Kalman filter gain
expression (Sage and Melsa 1971).

Kg(k) = P(k— 1)/(k — 1) hT(k) [h(k) P(k — 1)/(k—1
o(k) = P( it ) hT(k) [ (h%'(ks 5 R)}K—l )
(13)
where P(k/k) is the filter error covariance matrix given
by
P(k/k) = P(k —1)[(k — 1)—Kp(k) h(k) P{(k — 1)/(k—1)}
(19

Eqns. (4), (7), (13) and (14) constitute the algorithms for
minimum variance self tuning predictor. It can be
seen that both L.S.P. and M.V.P. are similar except
that the knowledge of variance R is utilised in the
latter case.

(iii) Predictor using stochastic approximation (P.S.A.)

In the stochastic approximation method (Saridis 1974)
the gain K (k) is sclected on the basis of convergence

of the parameter estimates. Several expressions are
are described by Saridis (1974) and others. A common
expression for gain is given by :

Ko(k) = aj(b + k) (i5)

where a and b are positive constants which can be chosen
by trial for fastest convergence. Egns. (4), (7) and (13)
constitute the algorithms for self tuning predictor using
stochastic approximation. This is most economical
computationally compared to other algorithms.

(iv) Two stage predictor (T.S.P.)

In model (1), the river flow data has been taken as
the values for actual flow. These data ate generally
erroneous and contain errors of measurement. In
such cases, the following model can be suggested :

n

€)= a0+ Dhutk—p (9
j=1

j=1
where x(k) represent the true value of flow discharge.

The recorded data is represented by y(k) and is related
to x(k) by

k) = x(k) + v(k) (17)

where v(k) is the measurement noise. For convenience,
this noise is assumed to be zero mean while Gaussian
having a constant variance R,. Substituting from
Eqn. (17), Eqn. (16) can be rewritten in the following
form :

y(k) = C(x) b(k) + v(k) (18)

Where C(x) = [x(k—1) x(k—2)...x(k—n) u(k—1)...
u(k—m)]

The one step ahead prediction algorithm for model (18)
is then given by :

A A A
y{k/(k—1)} = C (x) 0{k/(k — 1)} (19)

The above predictor is now function of not only the

A A
parameter estimates # but also of the estimates x. The
above problem can be solved by applying a two stage
estimation method [Prasad et al. (1977)] briefly explained
below :

Stage 1 : Parameter estimation and prediction

With apriori initial assumed estimates of x, minimum
variance estimates of 6 is obtained using Egns. (7),
(13) and (14) and prediction is made through Eqn. (19).

Stage 2 : Updating of estimate of x

Following the procedure of Prasad et al. (1977) the
estimates of state can be updated either through a Kal-
man filter or an stochastic approximation algorithm
after transforming Eqns. (16) and (17) to a suitable
state variable form. This estimate can be feedback to
stage 1 for updating the parameter estimate and then
making the prediction for the next period.

3. Application and results

In this section we briefly present some of the results
of application of the predictor algorithms described
in the previous section to flow discharge prediction of
river Tigris at Baghdad. Three kinds of data, namely,
the average daily discharge, the monthly average dis-
charge and yearly average discharge have been used for
daily, monthly and yearly discharge predictions. The
various data are processed on the HP-2000 ¢omputer
at the University of Basrah, Irag.

Daily discharge prediction — The data refers to one
water year period from October 1956 to September
1957. From the seasonal behaviour of the data, two
separate models have been selected for different periods
in the year, Model D-1 valid for the months February
to July and Model D-2 valid for the months August to
January. On the basis of autocorrelation tests (Sinha
and Sharma 1975), the approximate model orders are
decided. The two models are given as

Model D-1

» (k) = an y1 (k—1) 4+ a1z y1 (k—2) + ay3 yy (k—3)
+ ay y1 (k—4) 4 ey (k) (20)

Model D-2

Y2 (k) = az1 y2 (k—1) + a2 y2 (k—2) + az3y2 (k—3)+-
4+ e (k) (21)

To provide the initial estimates of the coefficients for
the recursive estimation algorithm, the first 40 data
is processed nonrecursively using nonrecursive least
square algorithm (Graupe 1976) to yield approximate
estimates of the coefficients and also the matrix 4(k-1)
(see Eqn. 9) or the matrix P[(k—1)/(k—1)] (see Egn. 13).
Three predictor algorithms, namely, the L.S.P., the M.V.P
and T.S.P. have been used to obtain one day ahead
prediction of flow discharge. In case of M.V.P.
and T.S.P., the variance of noise e;(k) aud e, (k) are
assumed to be 1000 and 10 respectively on the basis
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Fig. 2. Graphs of the actual daily discharge and predicted
values using model D-1
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Fig. 4. Graphs of the actual monthly discharge and predicted
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Fig. 6. Graphs of the actual vearly discharge and predicted

values for model Y-1

Fig. 3. Graphs of the actual daily discharge and predicted
values using model D-2
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Fig. 5. Graphs of the actual monthly discharge and
predicted values using model M-2
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Fig. 7. Graphs of the actual yearly discharge and
predicted valuzs using model Y-2
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of about 5 per cent measurement error. For the pur-
pose of comparison. offline predictions have also been
made using final estimated values of parameter as
follows :

ﬁll::I-()23 ‘ijz:().083

‘F13;0'3|7 ‘i|4:0.204

dy=1.74 dyy= — 0.99
(?23';:0,25

Figs. (2) and (3) show the results of predictions using
model D-1 and D-2 for various predictor algorithms.

Monthly discharge prediction — The monthly discharge
data refers to the period January [938 to December
1958, a total of 240 values. Data for average monthly
rainfall in the catchmen arca have also been used in
one of the models as deterministic inputs. The main
characteristic of the data is that it is periodic in nature
with a periodicity of 12 months. Following two models
of the type considered by Rao and Kashyap (1974)
have been assumed :

Model M-1:
y1 (k)= apyy (k—=1) + apayy (k=12) - byyu (k)
+ ey (k) (22)
Model M-2
ya (k) = az -+ az; y2 (k—1) + a2z sin [w (k—1)]
-+ a3 cos [w (k—1)] (25)

where u (k) represents the average monthly rainfall
2

and the frequency w = E_’_’E

Only L.S.P. and M.V.P. algorithms have been used
to obtain one-month ahead predictions. Offline pre-
dictions have also been made with following estimated
values of parameters

A
djp = 0.51, 413 = 0.41, by = 10.8,
dyg = 0.46, dy; = 053, dy; = 055,
513 = 0.27

Yearly discharge prediction - For the yearly discharge,
only 28 vyears data for the period 1931 to 1958 are
available. With this small number of data, the
autocorrelation test does not give a clear idea of the
model order, hence two models, one a second order
and another third order, have been tried. The models

assumed are

Model Y-1:
k) = ay vy k=1) + a2y (k—=2) + ei(k) (24

Table 1
The commulative root mean square error (C.R.M.S.E.)
of prediction
Kind of Model LSP. MVP. PSA TSP Offline
prediction

Daily D-1 373.9  639.1 — 645.4 252.5
D-2 39.8 38.1 —  137.9 30.3

Monthly M-I 581 577 — — 552
M-2 544 545 — .- 521

Yearly Y-1 — 361 341 — 325
Y-2 — 384 336 — 317

Model Y-2 :

va(k) = azp ya (k—1) +"a2z y2 (k—2) + a2y ya (k—3) -
+ ex(k) 25)

For better convergence with small number of data, the
predictor algorithm using stochastic approximation
has been used with gain K,(k)=a/(b-| k).
Various values of « and b have been tried. A good
convergence is obtained for a=b=1.
For the sake of comparison, prediction results using
M.V.P. and Offline method have also been obtained
using the parameter estimates as

4y = 0-43, 43 = 0:55 dy = 0-26,

433 = 0-4!, ffg; = 0-28

The results are shown in Figs. 6 and 7.

4. Comparison and conclusions

In each type of prediction with various models, the
prediction results are compared by the graphs (Figs. 2-7)
and also by evaluating the cummulative root mean
square error (C.R.M.S.E.) defined as

¥ A
Z [ (k) — yikf(h—1)} T2

=1

CRMS.E.— / 1
N

where N is the total number of data used.

Values of the C.R.M.S.E. for different prediction
results are given in Table 1 for the purpose of compari-
son. It can be seen from this table that the offline
prediction gives the least error in all the cases. This
is expzcted because the prediction results are obtained
only after processing all the data to obtain parameter
estimates. In the daily discharge prediction, the two
stage method has not given better results, meaning
thereby that the recorded data does not contain much
error. This method, therefore, has bzen discarded for
further prediction.
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The above results are however not the best as there
are many other considerations regarding the variance of
noise, variations of parameters and such other things.
The aim of the above work is to illustrate the applica-
tion of the recursive self adaptive prediction algorithms
to a hydrological process of river flow dischare which
has been achieved to a certain extent.
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