551.594.6: 551.585.1 (267)

Radio-climatology of the sea areas adjoining the Indian sub-continent

S. M. KULSHRESTHA

Meteorological Office, New Delhi

(Received 1 May 1974)

ABSTRACT. Based on the climatological data provided by the International Indian Ocean Expedition (1959-1965), radio-climatology of the sea areas adjoining the Indian sub-continent has been worked out in this paper. Monthly and seasonal mean values of radio refractivity are given for the sea level, 850 mb and 700 mb levels. Vertical gradients of radio refractivity are also presented.

1. Introduction

In recent years, many studies have been published describing the radio-climatology over the Indian land mass. No detailed investigation seems to have been made of the distribution of the atmospheric radio refractivity over the vast sea areas adjoining the Indian sub-continent. Radio-climatological data over these sea areas are of vital importance in the study of propagation problems and effective planning of appropriate telecommunication links between the mainland, numerous islands and ocean-going vessels. In this paper, an attempt has been made to present the radio-climatology of the sea areas lying between the equator and the Indian sub-continent.

2. Data for the present study

The sea areas adjoining the Indian sub-continent have lacked in regular meteorological observations except from a few island stations. A very large volume of meteorological data, both for the surface and the upper air, were however collected as part of the International Indian Ocean Expedition (I.I.O.E.) using coastal stations, island stations, ships, aircraft and satellites. The I.I.O.E. was active during 1959-1965 and was a joint project of the India Meteorological Department and the U.S. National Science Foundation. After careful processing, these data were published in 1972 by the National Science Foundation, Washington, D.C., U.S.A., as two volumes of the Meteorological Atlas of the International Indian Ocean Expedition.

The surface meteorological data in the I.I.O.E. Atlas are based on about 194000 standard weather observations recorded by ships of various types voyaging in the Indian Ocean during 1963 and 1964. From these observations, averages (by individual month and by five-degree latitudelongitude squares) of the meteorological parameters were worked out by a computer programme which was designed to remove various possible errors and inconsistencies. As the data in case of upper air observations could not be so extensive, upper air climatological information obtained before, during, and after the I.I.O.E. were incorporated together. These data were mainly from the radiosonde stations on coasts, islands and research ships. Monthly averages by 5° latitudelongitude squares were worked out generally based on about five aerological soundings per 5° square.

Thus averaged values of meteorological parameters, both for surface and upper air, are given for each 5° square in the I.I.O.E. Atlas. The present author has used these basic climatological data for computing the corresponding values of atmospheric radio refractivity given in this paper. The atmospheric radio refractivity, N, was computed using the standard expression N=77.6/T(P+4810 e/T), where T, P and e denote the temperature in degrees Absolute, atmospheric pressure and vapour pressure in millibar respectively.

3. Presentation of the radio-climatological data

The present study is confined to the sea area delimited by the equator and the coast-lines of Somalia, Arabia, Pakistan, India, Sri Lanka Bangladesh, Burma, Thailand, Malaysia and Indonesia. This vast sea area has been divided into 5° squares of latitude and longitude (Fig. 1). Most of the presentation of data is done here in the form of Tables. This necessitates the designation of each 5° square by a suitable indicator number for the sake of uniformity of reference in the various tables. Hence each of the forty squares in

Fig. 1. Designator numbers of the 5° squares

Fig. 1 has been assigned a specific serial 'Designator Number'. Tables 1 to 4 follow this scheme of designator numbers of 5° latitude-longitude squares given in Fig. 1.

Table 1 gives the mean values of atmospheric radio refractivity at sea level (N_0) for each of the 40 squares for each month and the average values for each season. In computing the seasonal averages, the following conventional classification is followed.

Winter season : December, January and February

Summer season : March, April and May

Monsoon season: June, July, August and September

Post monsoon season : October and November

Similarly, Tables 2 and 3 present the mean values of atmospheric radio refractivity at 850 mb and 700 mb levels respectively for each month and the averages for the four seasons.

Figs. 2, 3 and 4 present, in the form of maps, the *seasonal* averages of radio refractivity for the sea level, 850 mb and 700 mb respectively.

From the seasonal averages in Tables 1, 2 and 3 for the three levels (viz., sea level, 850 mb and 700 mb), the gradients of radio refractivity existing (i) between sea level and 850 mb level and (ii)between 850 mb and 700 mb levels were computed for each season for those 5° squares for which data were available. These values of gradients are presented in Table 4. As the 850 mb level isobaric surface is, on the average, 1.5 km above sea level and the radio refractivity can well be taken to decrease linearly with height in the free air above sea upto this relatively short height of 1.5 km above sea level, the value of the radio refractivity gradient between sea level and 850 mb level can be utilized to compute the radio refractivity gradient over the first one kilometre above the sea surface. This is denoted by $\triangle N$. These value of $\triangle N$ are also given in Table. 4.

Fig.2. Seasonal averages of radio refractivity for sea level

4. Discussion of the computed radio-climatological data

4.1. Radio refractivity at sea level (No)

A study of Table 1 and Fig. 2 brings out the following characteristics of the N_0 regime.

(i) N_0 varies between 342 and 398 N_0 units.

RADIO-CLIMATOLOGY OF SEA ADJOINING INDIAN SUB-CONTINENT

- (ii) Generally, N_0 is the highest during the monsoon months but could be of the same order in the summer months also for coastal areas. N_0 is the lowest in winter months.
- (iii) In any season the lowest values of N_0 occur in the northern and central parts

of the Arabian Sea.

107

⁽iv) In the Bay of Bengal, N_0 generally decreases from west to east except in winter months when it increases from west to east.

S. M. KULSHRESTHA

TABLE 1

Monthly mean and seasonal mean values of radio refractivity at sea level $(N_{\rm o})$ over the sea areas adjoining the Indian sub-continent

No.*	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Winter	Sum- mer	Mon- soon	Post Mon- soon
$\frac{1}{2}$	$\begin{array}{c} 342\\ 344 \end{array}$	$\frac{348}{348}$	$\frac{360}{368}$	$378 \\ 375$	388 389	390 395	$380 \\ 391$	$\frac{382}{385}$	377 380	$372 \\ 368$	$358 \\ 361$	$346 \\ 356$	$345 \\ 349$	375 377	382 388	$365 \\ 364$
$\frac{3}{4}$	$343 \\ 348$	$\frac{368}{355}$	$378 \\ 364$	$394 \\ 377$	$\frac{395}{388}$	$393 \\ 389$	$391 \\ 376$	$396 \\ 376$	$398 \\ 376$	$390 \\ 372$	$\frac{360}{362}$	$352 \\ 350$	$354 \\ 351$	389 376	$\frac{394}{379}$	$375 \\ 367$
$\frac{5}{6}$	$352 \\ 354$	$354 \\ 356$	$\begin{array}{c} 364 \\ 372 \end{array}$	$377 \\ 380$	$\frac{385}{388}$	$392 \\ 396$	$\frac{382}{389}$	$378 \\ 382$	$374 \\ 376$	372 381	366 372	$\frac{356}{367}$	$354 \\ 359$	$375 \\ 380$	$\frac{382}{386}$	369 376
7 8	$354 \\ 358$	$\frac{361}{369}$	$374 \\ 380$	$\frac{382}{389}$	$\frac{388}{401}$	$\frac{392}{396}$	$393 \\ 396$	$\frac{385}{392}$	$\frac{383}{396}$	$\frac{380}{386}$	$374 \\ 382$	$\frac{370}{358}$	$\frac{362}{362}$	381 390	$388 \\ 395$	377 384
9 10	$354 \\ 359$	$\begin{array}{c} 370\\ 376 \end{array}$	$374 \\ 375$	$389 \\ 382$	$391 \\ 380$	$396 \\ 398$	$392 \\ 390$	$392 \\ 389$	$392 \\ 389$	$386 \\ 386$	$384 \\ 373$	$\frac{361}{366}$	$362 \\ 367$	$385 \\ 379$	$393 \\ 392$	$385 \\ 380$
$\frac{11}{12}$	$351 \\ 357$	$\begin{array}{c} 362\\ 362 \end{array}$	$\begin{array}{c} 372\\ 366 \end{array}$	$391 \\ 382$	$\frac{395}{388}$	$\frac{393}{382}$	$\begin{array}{c} 392\\ 376 \end{array}$	$387 \\ 376$	$\frac{387}{378}$	$377 \\ 369$	$371 \\ 366$	$\frac{362}{354}$	$358 \\ 358$	386 379	$390 \\ 378$	$\frac{374}{368}$
$\begin{array}{c} 13\\ 14 \end{array}$	$356 \\ 362$	$\begin{array}{c} 364 \\ 364 \end{array}$	$370 \\ 372$	$\begin{array}{c} 376\\ 376\end{array}$	$\frac{385}{385}$	$\frac{382}{385}$	$377 \\ 380$	$376 \\ 385$	$\frac{376}{378}$	$369 \\ 371$	$369 \\ 374$	$362 \\ 369$	$361 \\ 365$	$\frac{377}{378}$	$\frac{378}{382}$	$369 \\ 374$
$\begin{array}{c} 15\\ 16 \end{array}$	$\frac{366}{365}$	$368 \\ 371$	$378 \\ 383$	$\begin{array}{c} 378\\ 384 \end{array}$	$389 \\ 388$	$\frac{388}{386}$	$\frac{382}{390}$	$384 \\ 382$	$380 \\ 380$	$374 \\ 380$	$380 \\ 380$	$\begin{array}{c} 372\\ 374 \end{array}$	$369 \\ 370$	$382 \\ 385$	$\frac{384}{384}$	$\begin{array}{c} 377\\ 380 \end{array}$
17 18	$\frac{366}{370}$	$375 \\ 375$	$380 \\ 373$	$388 \\ 384$	$390 \\ 388$	$396 \\ 396$	$\frac{388}{389}$	$\frac{390}{390}$	$390 \\ 389$	$382 \\ 382$	$\frac{384}{384}$	$\frac{368}{368}$	$370 \\ 371$	$\frac{386}{382}$	$391 \\ 391$	383 383
19 20	$369 \\ 370$	378 378	$\begin{array}{c} 377\\ 376 \end{array}$	$\frac{382}{378}$	$\frac{385}{385}$	$393 \\ 389$	$386 \\ 386$	$390 \\ 391$	$390 \\ 391$	$387 \\ 386$	$380 \\ 374$	$375 \\ 375$	$\begin{array}{c} 374 \\ 374 \end{array}$	$\frac{381}{380}$	390 389	$\begin{array}{c} 384 \\ 380 \end{array}$
$\frac{21}{22}$	$\frac{368}{366}$	$372 \\ 371$	$\begin{array}{c} 374\\ 374\end{array}$	$\frac{382}{378}$	$\frac{382}{386}$	$377 \\ 380$	$371 \\ 381$	$376 \\ 379$	$376 \\ 382$	$376 \\ 372$	$\frac{376}{378}$	$\begin{array}{c} 370\\ 372 \end{array}$	$\begin{array}{c} 370\\ 370 \end{array}$	$379 \\ 379$	$\begin{array}{c} 375\\ 380 \end{array}$	$\begin{array}{c} 376\\ 375 \end{array}$
$\frac{23}{24}$	$\frac{368}{370}$	$\begin{array}{c} 371\\ 374 \end{array}$	$377 \\ 376$	$378 \\ 378$	$382 \\ 389$	$\frac{386}{386}$	$380 \\ 380$	$\begin{array}{c} 384 \\ 383 \end{array}$	$381 \\ 384$	$\begin{array}{c} 374\\ 374 \end{array}$	$382 \\ 381$	$\begin{array}{c} 372\\ 374 \end{array}$	$370 \\ 373$	$379 \\ 381$	383 383	$378 \\ 378$
$\frac{25}{26}$	37 0 374	$\frac{374}{378}$	$379 \\ 382$	$\frac{384}{388}$	$\frac{388}{388}$	$\frac{386}{386}$	$384 \\ 387$	$\frac{383}{383}$	$384 \\ 384$	$\frac{380}{380}$	$\begin{array}{c} 380\\ 381 \end{array}$	$374 \\ 374$	$373 \\ 375$	$\frac{384}{386}$	$384 \\ 385$	$\frac{380}{380}$
27 28	$\frac{378}{374}$	$\frac{381}{380}$	$383 \\ 383$	$\frac{384}{384}$	$392 \\ 388$	$389 \\ 390$	$386 \\ 386$	$386 \\ 386$	$\frac{382}{383}$	$\frac{384}{384}$	$\begin{array}{c} 380\\ 384 \end{array}$	$\begin{array}{c} 374 \\ 381 \end{array}$	378 378	$386 \\ 385$	$386 \\ 386$	$\frac{382}{384}$
29 30	$\begin{array}{c} 374\\ 374 \end{array}$	$\frac{380}{382}$	$383 \\ 384$	$385 \\ 382$	$\frac{385}{385}$	$\frac{386}{386}$	$\frac{382}{382}$	$383 \\ 383$	$383 \\ 383$	$\frac{384}{384}$	$380 \\ 380$	$381 \\ 381$	$378 \\ 379$	$\begin{array}{c} 384\\ 384 \end{array}$	$\begin{array}{c} 384\\ 384 \end{array}$	382 382
$31 \\ 32$	$372 \\ 372$	$378 \\ 381$	$384 \\ 380$	$\frac{382}{382}$	$384 \\ 386$	$374 \\ 378$	$\begin{array}{c} 371\\ 372 \end{array}$	$378 \\ 376$	$\frac{377}{383}$	$379 \\ 378$	$\begin{array}{c} 378\\ 374 \end{array}$	$\begin{array}{c} 376\\ 374 \end{array}$	$375 \\ 376$	383 38 3	$375 \\ 377$	$\begin{array}{c} 378\\ 374 \end{array}$
33 34	374 378	$381 \\ 380$	$380 \\ 383$	$378 \\ 378$	$382 \\ 382$	$377 \\ 379$	$\frac{381}{380}$	$382 \\ 384$	$\frac{382}{376}$	$374 \\ 374$	$382 \\ 381$	$378 \\ 378$	378 379	$\begin{array}{c} 380\\ 381 \end{array}$	$380 \\ 380$	378 378
$35 \\ 36$	377 377	$380 \\ 380$	$379 \\ 376$	$\frac{382}{385}$	$386 \\ 389$	382 382	$\frac{383}{383}$	$\frac{382}{380}$	$376 \\ 379$	$\frac{381}{378}$	$\frac{381}{381}$	$\frac{380}{377}$	$\begin{array}{c} 379\\ 378\end{array}$	382 383	$381 \\ 381$	$\frac{381}{380}$
37 38	$\frac{377}{380}$	380 383	$379 \\ 383$	$381 \\ 384$	$385 \\ 384$	382 386	$\frac{383}{383}$	380 386	380 380	$\frac{381}{384}$	$380 \\ 382$	380 380	379 381	$382 \\ 384$	$\frac{381}{384}$	380 383
$\frac{39}{40}$	$384 \\ 380$	$\frac{382}{382}$	$383 \\ 382$	$\frac{389}{389}$	$\frac{385}{386}$	$\frac{382}{382}$	$\frac{382}{382}$	$364 \\ 383$	$380 \\ 384$	$\frac{385}{382}$	$\frac{381}{381}$	$380 \\ 381$	$382 \\ 381$	$386 \\ 386$	$377 \\ 383$	$383 \\ 382$

*Designator number of the 5°-square

RADIO-CLIMATOLOGY OF SEA ADJOINING INDIAN SUB-CONTINENT

TABLE 2

Monthly mean and seasonal mean values of radio refractivity at 850 mb level $(N_{\rm 850})$ over the sea areas adjoining the Indian sub-continent

No.*	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Win- ter	Sum- mer	Mon* soon	Post mon- soon
1 2	258	251	260	259	266	286	302	298 294	288	250 264	264	260	256	262	298 292	250 264
3	258	260	264	264	283	304	311	311 294	308	292	265	256	258	270	309 294	278
5							262	280	288		273			945	277	273
67	 298	255	256	258	245 270	326 299	305	304	298	284	272	266	273	261	302	278
8	268	268	267	275	286	302	304	304	304	294	274	267	268	276 278	304	284
9 10			268		210									268		
11 12	::	262	::	288 263	::	::	::	$252 \\ 280$::	::	::	277	270	288 263	$\begin{array}{c} 252\\ 280 \end{array}$::
13 14			.:	::	288 282	::		$270 \\ 284$	284	::			.:	288 282	270 284	::
15 16				::	282	::	314		300	.:	::	::	::	282 	307	.:
17	270	259	267 267	266	286	295	300	302	300	296	285	276	268	$273 \\ 267$	299	290
19	288	282	284	295	300	302 300	300	301	299 300	300 299	299 288	290 282	287 282	293 290	300 299	300 294
20			262	290				284	284					276	284	
22	•••	•••	273		••						••			210	298	
23 24	.:		::	11	296				298	::				296		
25 26	280 290	282 290	280 298	298 302	293 300	294 297	294 297	294 294	294 295	292 298	290 295	284 290	282 290	290 300	294 296	291 296
27 28	294	292 280	318 245	299	298 291	294	292	292	291 308	293	298	296	294 280	305 268	292 308	296
29 30	202	280 282	984	280 286	205	294 287	289	295	292	299	300 294	289	280 288	280 288	294 291	300 296
31				284				266						284	266 287	
33		297	276	1		295		298					297	276	296	
34	••	301		••		••		••				::	301			
35 36	.:		::	.:	294	::	.:	::	::	.:	::	::	::			.:
37 38		280 283	::	:	294	::	303		::	::	.:	::	280 283	294	303	::
39 40				:		288 293					305		::	::	288 293	305
10						200					000					

* Designator number of the 5°-square

109

TABLE 3

Monthly mean and seasonal mean values of radio refractivity at 700 mb level $(N_{\rm 700})$ over the sea areas adjoining the Indian sub-continent

No.*	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Win- ter	Sum- mer	Mon- soon	Post mon- soon
$\frac{1}{2}$	222	212	234	214	214	220	228	224	222	213	212	211	215	220	224	212
$\frac{3}{4}$	206	206	$\begin{array}{c} 212 \\ 203 \end{array}$	218	223	235	240	$\begin{array}{c} 242 \\ 207 \end{array}$	236	224	205	204	205	$218 \\ 203$	$238 \\ 207$	214
	•••	::		•••	215		209	211	228	••	202			215	$\begin{array}{c} 210 \\ 228 \end{array}$	202
7 8	$\begin{array}{c} 207 \\ 209 \end{array}$	$208 \\ 211$	$\begin{array}{c} 212 \\ 218 \end{array}$	$217 \\ 223$	$\frac{222}{225}$	$\frac{229}{236}$	$235 \\ 235$	$227 \\ 238$	$229 \\ 242$	$\frac{218}{229}$	$\begin{array}{c} 210 \\ 213 \end{array}$	$206 \\ 210$	$207 \\ 210$	$217 \\ 222$	$\frac{230}{238}$	$214 \\ 221$
9 10		•••	 		214 		•••						•••	214		
$\frac{11}{12}$		204			•••	••		217					204		217	
13 14		···			$\begin{array}{c} 227 \\ 224 \end{array}$		•••	$215 \\ 221$::	::			· ·	$\begin{array}{c} 227 \\ 224 \end{array}$	$215 \\ 221$	
$\begin{array}{c} 15\\ 16 \end{array}$					224		232		::					224	232	
17 18	208 	207	$208 \\ 209$	218 	223	235	236	236	233	230	219	211	209	$\frac{216}{209}$	235	224
19 20	$\begin{array}{c} 219\\ 214 \end{array}$	$208 \\ 219$	$\begin{array}{c} 216 \\ 219 \end{array}$	$\begin{array}{c} 224 \\ 222 \end{array}$	$231 \\ 231$	$\begin{array}{c} 231 \\ 231 \end{array}$	$233 \\ 233$	$233 \\ 230$	$231 \\ 234$	$234 \\ 228$	$228 \\ 224$	$218 \\ 215$	$215 \\ 216$	$\begin{array}{c} 224\\ 224\end{array}$	$232 \\ 232$	$231 \\ 226$
$\frac{21}{22}$::	207	220				217	225	· 	•••	203	203	214	217	225
23 24					228		::	•••	215	•••	•••			228	215	••
$\frac{25}{26}$	$\begin{array}{c} 212 \\ 218 \end{array}$	$\begin{array}{c} 219 \\ 219 \end{array}$	$217 \\ 217$	$222 \\ 225$	$227 \\ 229$	$\begin{array}{c} 225\\ 226 \end{array}$	$227 \\ 229$	$\frac{226}{228}$	$228 \\ 229$	$\frac{226}{230}$	$\frac{226}{228}$	$217 \\ 219$	$\begin{array}{c} 216 \\ 219 \end{array}$	$\frac{222}{224}$	$\frac{226}{228}$	$226 \\ 229$
27 28	220	$217 \\ 234$	215	222	$\frac{224}{214}$	220	226	228 	$\begin{array}{c} 226 \\ 238 \end{array}$	228	228	224	$\begin{array}{c} 220\\ 234 \end{array}$	$\begin{array}{c} 220\\ 214 \end{array}$	$\frac{225}{238}$	228
29 30	$\dot{223}$	$218 \\ 225$	222	$\begin{array}{c} 215 \\ 220 \end{array}$	228	226	226	227	229	232	$\dot{229}$	224	$218 \\ 224$	$215 \\ 223$	227	230
31 32	201	- ::	215	214				$\begin{array}{c} 217\\ 224 \end{array}$	•••	•••	••	••	201	$214 \\ 215$	$217 \\ 224$::
$\frac{33}{34}$::	224 				224	•••	223		•••		•••	224	кэ •Э	224	::
$35 \\ 36$::		••		•••	•••	**				••	::	
37 38		$\begin{array}{c} 222\\ 219 \end{array}$			223			•••		•••	•••		$222 \\ 219$	223		
$\begin{array}{c} 39 \\ 40 \end{array}$				•••		24 S	23 63	••			238	T		•••	::	238

*Designator number of the 3°-square

RADIO-CLIMATOLOGY OF SEA ADJOINING INDIAN SUB-CONTINENT

No.*		∆Surface	-850 mb			△850-7	00mb			$\triangle N$					
No.*	w	s	M	P	w	s	M	Р	v	V	s	М	P		
2	93	115	96	100	41	42	68	52	6	2	76	64	66		
3	96	119	85	97	53	52	71	64	6	4	79	57	65		
4			85	÷			87					57			
5			105	96			67	71				70	64		
6		135	90			30	68				90	60			
7	89	120	86	99	66	44	72	64	6	0	80	58	66		
8	94	114	91	100	58	54	66	63	6	13	76	61	66		
9		107				64	'				72				
12	88		98		66		63		t	59		66			
13		89	108			61	55				60	72			
14		96	98			58	63		22.		64	66			
15		100				58					66				
16			77			• • •	75					52			
17	102	113	92	93	59	57	64	66	(38	76	62	62		
18		115				58			÷.,		76				
19	87	88	90	84	72	69	68	69	l	58	58	60	56		
20	92	90	90	86	66	66	67	68	(32	60	60	58		
21		103	91			62	67				69	61			
23			85				83					57			
24		85				68					57				
25	91	94	90	89	66	68	68	65		61	63	60	60		
26	85	86	89	84	71	76	68	67		57	58	60	56		
27	84	81	94-	86	74	85	67	68		56	54	63	58		
28	98	117	78		46	54	70			66	78	52	· · ·		
29	98	104			62	65				66	70				
30	91	96	93	86	64	65	64	66		61	64	62	58		
31		99	109			70	49				66	73			
32			90				63					60	· · ·		
33	81		84		73		72			54		56			
37	99				58					66	••				
38	98	90			64	71				66	60	·			
40				77				67					52		

TABLE 4 N-gradients over the sea areas adjoining the Indian sub-continent

*Designator No. of the 5°-square W-Winter 4.2. Radio refractivity at 850 mb level (N₈₅₀)

S-Summer

P-Post Monsoon

 N_{850} regime exhibits the following pattern as seen from Table 2 and Fig. 3.

(i) N_{860} lies between 250 and 318 N units.

(ii) Generally, N_{850} is the highest in the monsoon months and is the lowest in winter months. But over the waters around Sri Lanka, N₈₅₀ is the highest during summer months.

(iii) While the lowest values in any season appear to occur over the central Arabian Sea, no definite pattern is discernible over the Bay of Bengal.

4.3. Radio refractivity at 700 mb level (N₇₀₀)

A study of Table 3 and Fig. 4 reveals the following characteristics of the N_{700} regime.

(i) N₇₀₀ varies between 202 and 242 N units.

- (ii) N_{700} is the highest in the monsoon months and is generally the lowest in the winter months.
- (*iii*) By far in any season the values of N_{700} over the open parts of the sea areas are lower than those over the coastal areas.

4.4. Vertical gradients of N

Table 4 gives the seasonal averages of vertical gradients of N between (i) sea level and 850 mb level (ii) 850 and 700 mb levels and (iii) sea level

and 1 km above sea level. It will be seen that while (\triangle sea level-850 mb) is generally the highest in summer season, (\triangle 850-700 mb) is generally the highest during monsoon months.

Sensonal values of $\triangle N$ vary between 52 and 80 N units. For many parts of the sea area under study, $\triangle N$ is the highest in summer months but for many others, it is the highest in monsoon months. While over most of the coastal waters, $\triangle N$ is the highest in the summer months, the same is not true for many other coastal waters, *e.g.*, those adjoining Somalia and Sri Lanka.

5. Conclusions

N values at sea level, 850 mb and 700 mb levels over the sea areas adjoining the Indian sub-continent have been computed and presented in the form of tables and maps. Values of N gradients between sea level and 850 mb level, 850 and 700 mb levels, and sea level and 1 km above sea level have also been presented. This radio -climatological data should be useful to radio-meteorologist and telecommunication engineers.