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ABSTRACT. Fstimation of microstructural parameters controlling clustering in different directions of a cloud
scene is investigated, The cloud scene is represented as a Markov random field and the parameters are estimated by
a maximum likelihood technique. A surrozate image, corresponding to each scene, is generated by a Monte-
Carlo procedure. Results of analysing NOAA and INSAT cloud imagesare presented.

1. Introduction

The main motivation for studying cloud morphology
is its importance in the atmospheric radiation trans-
port. Though several models exist (Avaste etal. 1974 ;
Harshvardhan and Weinman 1982 ; Naber and Wein-
man 1984; Welch and Weilicki 1984) for describing
radiative transfer in three dimensionally non-uniform
cloud layers, they are all far away from any realistic
situation. This is largely because it is still a very difficult
task to quantitatively characterise real cloud fields to
make modelling very efficient. The methods widely used
such as the 2D-FFT (2-dimensional Fourier Transform),
spatial coherence (Rosenfeld and Kak 1976; Coakley
and Bretherton 1982; Logan et al. 1983; Mohan et al.
1988) can although give a lot of information about the
gross properties of clouds in an image, are inadequate in
detecting their microstructural features. But a knowledge
of the microstructural features of clouds or, in other
words, the fine details of the cloud structure in the
smaller space scales is quite important since it very
often serves to distinguish different types of clouds from
one another.

In this paper, we demonstrate a method for deriving
a set of parameters from a cloud image which would
represent the microstructural features of clouds. Our
method is based on modelling a cloud image by a two
dimensional random Markovian field. Together with the
2D-FFT we believe that this scheme will be able to

rovide more complete quantitative characteristics of
cloud fields (Garand and Weinman 1986). It is obvious
that the lack of knowledge of the cloud microphysical
processes precludes any possibility of detailed physical

analysis of cloud images. The only option available is
a statistical representation of satellite images of cloud
fields. Such images can reasonably well be represented
by 2-dimensional Markov random fields (Cross and Jain
1983; Garand and Weinman 1986). In a two dimensional
Markovian field, the probability of any pixel to have a
certain grey level depends only on the grey level distri-
bution of its neighbours. The parameters we derive
express the strength of clustering of pixels in the
vertical, horizontal and the two diagonal directions.
They can in fact be very efficient signatures of the
microstructural features of clouds. For a given cloud
image, these parameters are estimated by randomly
picking up pixels and relating their grey values to
their neighbours in the four directions using a standard
maximum likelihood technique. The reasonableness of
our assumption is decided by our ability to derive these
parameters and to use them to synthesise artificial
cloud images which should be statistically similar to
the originals with the same texture. One should bear in
mind that the sampling area should be sufficiently
large to contain enough grey level variations for the
textural features to show up and also, the area should be
suitably homogeneous as regards the compositional
structure of clouds.

The details of the parameter estimation method are
outlined in Section 2. In Section 3, we describe the synthe-
sis of artificial images for a specified set of the micro-
structural parameters and a histogram identical to those
of the originals. In Section 4, we analyse some
cloud scenes produced by NOAA-6 and INSAT-1B
satellites over the Arabian Sea and the Indian Ocean.
The estimated parameters for the different scenes are
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Fig. 1(a). Codings at order | Fig. 1(b). Codings at order 2
tabulated. The original cloud scenes as well as the
synthesised ones for the corresponding set of parameters
are shown side by side for a comparative study. In
Section 5, we discuss the results and conclusions of
our work.

2. Estimation of microstructural parameters from cloud imagery

As mentioned in Sec. I, we represent the cloud
image by a two-dimensional Markovian field. However.
instead of taking the whole (ordinarily, a 512<5]2
pixels size) image for analysis, we have chosen only
64 < 64 pixels size subscene, suitably homogeneous as
regards cloud composition and structure. This size is
also optimum from the point of view of future numerical
manipulations in computer (Garand and Weinman
1986). For these reasons, the number of grey shades
present in the image has been restricted to only 16.

Following Cross and Jain (1983), we assume the
Markovian model to be a binomial one so that the
conditional probability density is expressed as :

PXyp=J 1 0)=(E (1 — 8 )i —1—i (Gu\)'i (n

where, P (X, = jfz) is the probability of the
(i,k)th pixel to have grey level j given the configuration
By of its neighbourhood and G denotes the number of
grey levels in the image (G=16 in our study). By defini-
tion (Besag 1974; Cross and Jain 1983):

By = exp (Ty)/[1 + exp (Ty)] (2)

M
Tw = & B(m)Ly(m) (3)

m=1

In Egn. (3), B(l),..... B(M) are the required
microstructural parameters controlling the clustering
strength in a particular direction, M=2N | | is the
number of parameters, N being the order of the Markov
model. The directions of clustering are further implied
by the constants L(m). Thus, by definition L; (1)=1.
L;y(2) is the sum of brightnesses of the two vertical
neighbours. Ly (3) that of the two horizontal neigh-
bours, while L;(4) and L;(5)are the sums of bright-
nesses of the pairs of diagonal neighbours in the
northwest-southeast and northeast-southwest direc-
tions respectively. We have restricted ourselves to the
cases of Ist and 2nd order models with three and five
clustering parameters respectively. As already men-
tioned, B (2), B(3), B(4) and B(5) are quantitative

measures of clustering strengths in the vertical, horizon-
tal and the two diagonal directions. A relatively large
positive or negative value for a particular B signifies
a high degree of organization or fragmentation of the
cloud elements along the corresponding direction. As
regards B(1). which does not belong to any particular
direction, it is not an independent parameter and was
empirically found to be related to the other parameters

M
as B(l) ~ — (G - 1) X2 B(m)(Garand and Weinman
=2

m

1986). Models of higher orders lead to severe complexity
and convergence problems in numerical calculations
without contributing significantly to the cloud classifi-
cation problem. The definition of neighbourhood as
employed here meets with difficulty while considering
the pixels lying at the four boundaries of the image.
To avoid this, the image has been considered to be
laterally cyclic.

For estimating the clustering parameters B(m) we
adopt the straight forward maximization of the loga-
rithm of the likelihood function, i.e., of :

L(X) = -; In [P(Xy = j | 0N (4

where X on the R.H.S. denotes that the sum is to be
performed over all pixels of a particular coding chosen in
such a way that the terms of the sum are independent of
one another. Thus the scene is broken up into several
codings. The number of possible codings depends on
the model. Figs. I (a) & | (b) represent the codings at
orders | and 2. It is obvious that the pixels belonging to
a particular coding are independent since no pixel is
neighbour of any other in the same coding.

Hence, we will have two different likelihood functions
at order | and four at order 2. Accordingly, we have two
different estimates of the three parameters at order | and
four different estimates at order 2. If the estimates are
reasonably close, they have to be averaged. If they are
not close, the result becomes a non-reliable one, in the
sense that the Markovian model does not faithfully
represent the real image. Thus, the whole problem
boils down to finding the zeroes of the derivatives of
L(X) with respect to the individual clustering parameters
B(m). The roots are found by a generalised Newtonian
iteration (Conte and De Boor 1980) :

Bli1— Bt J— Ft (5)

where, k is iteration number, B is the M «/ column
vector and F is the M < [ vector of derivatives :
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(6)
and J is the M < M Jacobian :
oL
J (m. n) = cB(m)eB(n)
N L (m) Lig (n) (1— G) exp (Ty)
Wexp (e @)
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Fig, 2. NOAA-6 image of cloud over Arabian Sea with the scenes Fig. 3. INSAT-IB image of cloud over Indian Ocean with the
A t(; D marked. These scenes are each of size 64< 64 scenes | to 4 marked having the same size
pixels

F.g. 4 (a). Enlarged and enhanced Fig. 4(b). Surrogate image of 4(a) Fig. 4(c). Surrogate image of
version of scene A of in first order 4(a) in second
Fig. 2 order

Fig. 5(b). Surrogate of scene Figs, 6(a & b). Scene C and its surrogate in first Fig. 7 (1). Scenzs D
B in first order
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. 7(b & ¢). Surrogates of scene D in first and second order
respectively

Figs. 8(a). Enlarged and en- Figs, 8(b). Surrogate image of
hanced version of scene 1 in second
scene 1 of Fig. 3 order

Figs. 9(a & b). Scene 2 and its second order surrogate

Fig. 10(b). Second ordersurro-  Figs. |1 (a & b). Scene 4 and its second order surrogate
gate of scene 3




TABLE 1

Results of first order calculation for NOAA image

Microstructural parameters
N—— =

T T e ————

B(1) B(2) B(3)
A 2.426 .043 2123
As 2.080 .036 .102
B —2.983 .057 162
Bs —2.831 .049 149
c -2.457 .053 115
Cs —2.317 .051 104
D --2.452 .098 063
Ds --2.614 .104 .064

To avoid numerical instability in inversion of a matrix
we have replaced Eqn. (5) by an equivalent one :

J(ABY=—F* (8)

where, ( /\ B )v=B*+1 Bt Starting wigh mitial guess
B(m)=0, m=1,....., M Eqn. (8) was iterated to find
the (/\B):s by a standard linear equation solver by
Gaussian elimination,

Convergence was very fast, requiring typically five
to six iterations in all the cases studied by us.

3, Synthesis of image with derived parameters

Starting with a white noise image having the same
histogram as the original one, it is possible to syn-
thesise an artificial image with the same (or as closely
approximated as possible) set of parameters. We call this
a surrogate image and it will be statistically similar
to the original one as regards the textural details. The
generation of the surrogate image is achieved through
a process of switching of randomly picked pairs
of pixels belonging to the same coding each time. This
switching of pixels has to be done sufficiently large
number of times till the parameters are brought
as close to the original ones as possible. Because
of the statistically random nature of this switching
process, it is next to impossible to achieve exact
coincidence of the parameters. The degree olf c]qspness
between them is an indirect measure of applicability of
the Markov model. However, in all the cases studied
here, the agreement was reisonubly good.

If X represents the image before switching and Y
that after, then the criterion for taking the decision of
switching is the ratio P(Y)/P(X) = R If R = 1, the
pixels picked at random (but belonging to the same
coding) are switched. If R<1, then R is compared
with the output of a uniform pseudo-random number
generator in (0,1) and if R is found to be greater
than this output, then ths switching is done. This
technique was devised by Metropolis er al. (1953).
With the above mentioned restriction of choosing the
two pixels from a particular coding, the expression for
R becomes (Garand and Weinman 1986) :

R = exp (T, — T1)"1 — ™ ©)
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where, x; and x, are grey levels of the two pixels. One
iteration consists of S2 attempted exchanges with §2
being the totil number of pixels (4095, in our case).
After a few iterations, the total numbz: of change
becomes nearly constant, signifying that ths Mirkov
process has attained stationarity. By trial and error,
we have found that about thirty iterations are suffizient
for all the scenes analysed by us. At this stage, we
estimated the parameters of ths resulting imagz by the
procedure outlined in Sec. 2. As will bzshown in Szc. 4,
in all cases encountered by us, the parameters of the
surrogate images were reasonably close to those of the
real ones, thus proving the correctness of parameter
estimation. Also the synthesised images look texturally
similar, of course, in a statistical sensz. to th= original
ones.

4. Analysis of th: NOAA and INSAT cloud images

Fig. 2 is a NOAA-6 digital infrared imagzs of a
cloudy scene taken on 20 November 1980, over the
Arabian Sea. We have chosen four distinct scznes from
this image as indicated by the square boxes each of
size 6464 pixels and subjected them to ths Markovian
analysis. These scenes are chosen on the basis of having
clouds with more or less uniform distribution and mor-
phology. In a similar manner, we have chosen four
scenes from an INSAT-IB digital visible cloud image
(Fig.3) over the Indian Ocean taken on 10 Novembsr
1984. We have represented the full rangz of grey level in
each scene in terms of 16 discrete shades, from 0 to
15. Tt has been found that the textural details of clouds
represented by the microstructural paramsters are
retained even with 16 grey levels, Moreover, by kezping
the range of grey level same for all imagszs, it bacomas
easy to compare different cloud scanss quantitatively,
On the other hand, if we use the full rangzs of grey
levels of the original scenes which are usually very largz
the number of possible neighbourhood configurations
of each pixel becomes extremely | irga that cannot bz well
represented statistically. Besides, that will also lead to
numerical difficulties in the computations bezcause of
the binomial probability distribution ussd. But for
better contrast these images are presented in their
enlarged versions [Figs. 4(a) to 7 (a) for NOAA and
Figs. 8 (a) to 11 (a) for INSAT] in anenhanced lorm.
Due to this, the appearances of the scenes in the original
images and their reproduced versions are slizhtly
different, notably in the case of scenz D of Fig. 2.

We have carried out the first order Markovian
analysis for the NOAA scenes and second ordzr analysis
for the INSAT scenes and two of the NOAA sc:nes.
After the microstructural parameters were retrieved
from these scenes, a surrogate image in each case was
also synthesised [(Figs. 4 (b) to 7 (b), 4 (c) and 7 (c)
for NOAA and Figs. 8(b) to lI(b) for INSAT|. The
parameters of the original as well as the surrogate
images are displayed in Tables I to 3 . In these taoles,
the suffix ‘S after a scene index dznotes the surrogate
version of the corresponding original,

Table 1 gives the results of the first order calculations
in which B(2) and B(3) represent the clustering strength
in the vertical and the horizontal directions respzciively
as mentioned in Sec. 2. It can be seen that the valuzs of
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TABLE 2

Results of second order calculations for the scenes A and D
of NOAA image

Microstructural parameters

Sccng ——— - m— e A
B(1) B(2) B(3) B(4) B(5)
A —2.305 .089 143 —.043 —.033
As2 —2.144 .080 .123 —.034 --.026
(B] -~2.401 2137 .134 —. 059 -.053
Dsa --2.470 136 153 —.075 -.068

the parameters for the synthesised images agree reason-
ably well with those of the original ones. The apparent
differences among the appearances of the original
scenes in spite of the close values for their parameters
(e.g., scenes A and C of Fig. 2) can be attributed to
the wide differences in their histograms,

In Table 2, we present the second order results
for the two widely different scenes A and D whose
first order parameters are given in Table I. A comparison
between these two tables for the first three parameters
shows that the values do not agree very well. This
apparent discrepancy is due to the dependence of the
estimation process on the order of the model. Inthe first
order, the diagonal clustering is completely ignored and
thus, we have only two codings whereas in the second
order, the diagonal clustering is explicitly taken into
account and so, we have four codings. This indicates
that while comparing two different cloud scenes the
parameters have to be determined to the same order.

It is obvious that for more detailed information
of the cloud morphology one has to prefer second
order to the first order Markov model. Consequently,
for the four scenes belonging to the INSAT image,
we have employed only the second order calculations.
These results are presented in Table 3.

1n Table 3.some parameters (¢.g., in the diagonal
directions) have been shown as negligible. This is due to
the fact that the corresponding numerical values were
several orders of magnitude smaller than the rest and we
believe that they were very insignificant indicating the
absence of any clustering in those particular directions.
It is worthwhile to mention that this feature was main-
tained in the corresponding surrogate versions.

5. Summary and conclusions

In this work. we have described and demonstrated
the usefulness of the Markovian approach in the
quantification of the cloud microstructural properties.
We believe this to be an important step in the quantita-
tive classification of clouds into different types. This
method is very effective when a large number of cloud
scenes are to be analysed since, being fully computerised.
it leaves no scope for subjective human errors. However.
it should be borne in mind that this scheme is to be
supplemented with other informations about the cloud
microstructural properties ascertainable through other
analyses such as 2D-FFT, clustering technique etc.
Efforts have been undertaken to supplement this method

TABLE 3

INSAT image results

Microstructural parameters
A

Scene  —— ——-

- - s e |

B(1) B(2) B(3) B(4) BI(5)
| -2.780 .092 .086 Negligible .036
Is —2.672 096 080 Do. 026
2 —2.630 17 080 ~~.018 Negligible
25 -2.879 130 .093 --.028 Do.
3 —3. 183 092 081 .051 058
is —2.936 080 063 .045 .040
4 -3.000 1 .077 Negligible 042
4s —2.999 113 079 Do. 034

with 2D-FFT. In this new scheme, we are starting with
a primitive image better than the white noise one for the
generation of the surrogate. This provides a better
visual similarity of the surrogates to the originals,
This work will be reported later.

It may be possible, in future, to study the clouds
associated with the onset of monsoon by studying the
time evolution of their microsturctural parameters and
gain further insight into the study of monsoon. It will
also be of great interest to find out any possible correla-
tion between these parameters and the physical pro-
perties of clouds such as their albedo, emissivity, liquid
water content etc s¢ that regression relations could
be found for calculating these properties in terms of
microstructural parameters of the cloud considered.
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