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ABSTRACT. The effects of uniform rotation and non-uniform temperature gradient on the onset
of Marangoni convection driven by surface tension in a horizontal layer of fluid is studied subjected
to infinitesimal amplitude analysis assuming both the bounding surfaces free and adiabatic. A single-
term Galerkin technique with single term expansion is used to obtain the eigenvalues which are then
computed numerically. Attention is focused on the situation where the critical Marangoni number is
greatest or least than that for the uniform temperature gradient. Numerical results are obtained for
special cases and some general conclusions about the destabilizing effects of various basic temperature
profiles and the stabilizing effect of Coriolis force are presented. It was found that the most destabilizing
temperature gradient is one for which the temperature gradient is a step function of the depth and
the most stabilizing temperature gradient is inverted parabola and the Coriolis force has inhibiting

effect on the onset of Marangoni convection.

1. Introduction

The determination of the criterion for the onset of
convection induced by surface tension has considerable
interest in meteorology. Convection driven by surfaze
tension gradients is inevitable in meteorcicgy becuusc
such configurations often involve free surfaces. The
experiments on the Apollo 14 and 17 flights (reported
by Grodzka & Bannister 1972, Bannister et al. 1973)
have shown that convection can still be induced by
surface tension cffects, even if buoyancy forces are
absent. The neglect of such a convection may cause
considerable errors in setting up experiments in space
and in the interpretation of their results. Hence, for
meteorological studies in space, it is of importance to
evaluate the Critical Marangoni number below wh‘ich
convection cannot occur and to suggest the mechanism
to accelerate or suppress convection.

In small scale fluid mechanics, the fact that interfa-
cial regions between fluid phases play in driving as well

as impeding convection was observed for the first time
by Block (1956). Pearson (1958) gave a detailed
mathematical analysis for the onset of convection
driven by surface tension gradients, Later, Sternling &
Scriven (1959) and Scriven & Sternling (1960, 1964)
have examined the onset of steady cellular convection
driven by surface tension gradients as an extension of
Pearson’s (1958) stability analysis, Nield (1975) has
cx:.mlincd the onset of transient convective instability
driven by surface tension using the Galerkin method.
But, the effect of Coriolis force on the surface tension
driven convection has not been given much attention.
Sarma (1979) has investigated the problem of thermo-
capillary stability of a thin liquid layer heated uniform-
ly from below and subjected to a rotation about the
transverse axis. He has illustrated the vital role of
the different boundary conditions and the destabilizine
chz-lra{:lcr of the long-wave disturbances at the fluid-
fluid interface using a neutral stability curve based on
analytical solutions of the pertinent eigenvalue problem
These results pertain to a basic uniform temperaturt;
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gradient. In meteorological problems, however, it 1s
difficult to maintain a basic uniform temperature gradi-
ent, There is usually sudden heating or cooling giving
rise to a non-uniform basic temperature gradient.
Recently, Rudraiah (1982) has investigated the effect
of non-uniform temperature gradient on surface tension
driven convection with rotation about the vertical axis
with the lower surface z = 0 in contact with a fixed
rigid plane and the upper surface z=d free. In meteo-
rological problems it is well known that both the
boundaries are free, where due to latent heat release
there will be an increase in temperature at irregular
intervals giving rise to a non-uniform temperature gra-
dient. The case of increase in temperature at finite
number of points along the basic state temperature
profile would be of great physical interest in meteoro-
logical problems, Therefore, in this article we extend
the analysis of Rudraiah (1982) to investigate the
condition for the onset of convection driven by sur-
face tension when both the boundaries are free and
adiabatic. To achieve these objectives the plan of this
paper is as follows.

The basic equations and the corresponding boundary
conditions are discussed in section 2. A simple method
to include the non-linear effects is also discussed in
section 2. A condition for the onsct of convection for
various temperature profiles is derived in section 3
using a single term Galerkin expansion. Some importani
conclusions and the relevant physical interpretations
are made in section 4.

2. Formulation of the problem

In this section, we consider the basic equations and
the corresponding boundary conditions., For this, we
consider an infinite homogencous liquid layer of uni-
form thickness ‘d’ extending to infinity in the x-dircc-

-
tion and rotating with a constant angular velocity @
about the z-axis which is transverse to the layer. The
lower surface z = 0 and the upper surface z = 4 are
free. The only physical quantities that are assumed to
vary within the fluid are the temperature, the surface
tension, which is regarded as a function of temperature
only, and the rate of heat loss from the surface, which
is also a function of temperature only. The basic tempe-
rature profile is non-linear due to sudden heating (or
cooling) at a boundary, )

2.1. Basic equations

The basic equations of motion are :

B o r@vg=—1! Up+uvtg— 20 x q
ot P } P .

(2.1)

7q=10 (2.2)

at
where,

q = (u, v, w) is the velocity field.
p = the total pressure,

= the temperature,

= the density of the fluid,

= p/p Is the kinematic viscosity of the fluid,
the viscosity of the fluid,

= k/pcp is the thermal diffusivity,

= the thermal conductivity,
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(0, 0, £2) is the uniform angular speed of the
system,
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2.2. Boundary conditions

The boundary conditions on velocity are obtained
from mass balance, the no-slip condition and the stress
principle of Cauchy. Since the layer is bounded by
free surfaces, the boundary conditions on velocity can
be obtained by equating the change of surface-traction
due to the temperature variation across the surface to
the shear stress experienced by the liquid at the free
surface (Pearson 1958). By balancing the surface

tension gradient with shear stress at the free surface,
we have

0,
Tz = ——

cu 00, ov
e — Mt and T = —% = O
ex * oz v oy Koz
where o, is the surface-tension, T and 7, are the
shear stresses.
By proper differentiation and using (2.2), we get
Eoy | oy Pw
ax2 YT @3
Following Pearson (1958), we can assume that o,
can be expanded as the first order in powers of the
temperature variation at the surface, in the form
7, = 0, — opT (2.6)
where, o, is the unperturbed value of . and

= :(80'4)
T T T="T

For most liquids oy is positive, for, as the temperature
rises, the difference between the liquid and jts vapour
phase decreases. Hence, the suitable boundary conditions
at the free surface in the presence of surface tension is

A2 40 2 ~9
w=0and p 22 — er | &#T
na p F-—E O-T ( ax2 + FJ’E (2 . 7)

which in the non-dimensional case takes the form

. ew 2T 2T
! 0 and 322 — _M'ﬂ (‘&T _‘L 9_v2 ) (2.8)
where,
ATd .
M" S i is the Marangoni number,
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In the absence of variation of surface-tension with
temperature the boundary conditions on velocity at
the free-surface are

2
% _Qatz=Oandd (2.9)

W=
022

In the study of convection, the thermal conditions
applied at the upper and lower surfaces of the fluid are
based on the supposition that these surfaces are in
contact with the materials of infinite thermal conductivity
and heat capacity. For, the temperature at the surface
is not perturbed when the quiescent state breaks down.
A more general thermal boundary condition is

_, T
T=2X—- (2.10)

where A is a constant depending on the thermal pro-
perties of the boundary and the liquid. The extreme cases
A = 0and X! = 0 are limiting approximations for
temperature perturbations to a very good and bad
conductor respectively. In practice, these are referred
to as the isothermal and adiabatic cases. Since the
meteorological problems involve free surfaces, the actual
physical situation, viz., the heat exchange between the
surface and environment, suggests that the standard
thermal boundary condition of fixed temperature (i.e.,
isothermal) may be too restrictive. In that case, adiabatic
boundary conditions

oT
9z
are more realistic. This is considered in this paper.

— Qatz=0and d (2.11)

2.3. Simplification of non-linear forces

The equations of motion (2.1) to (2.4) are highly
non-linear and hence the determination of solutions
either analytically or numerically is very complicated.
To understand the physical insight with reasonable
mathematics, usually some assumptions are made.
One of the assumptions is that the maximum tempera-
ture fluctuations from the mean must be small. In
terms of the dimensionless parameters this amounts
to saying that the deviation of the Critical Marangoni
number M, from the Marangoni number is small
(ie., M;— M, < 1). This assumption implies that

the non-linear terms (q.7 )qand (q'VV ) T in qua-
tions (2.1) and (2.3) can be divided into terms which
are finite when averaged over a horizontal plane and
into terms of zero average. To achieve this, we let

T*=T@ + T 21 (2.12)
If the bar over a quantity denotes the average over

I m

- I o
a horizontal plane (— mﬁ[: ] { } dxdy ), then

—l —m
we have

T*=T@), T 5.2 t)=0 (2.13)

Substituting (2.12) into (2.3) and dividing by (pc);
we get

~9
Teg — PN (V)T (2.14)

oT (2)
0z
cal gradient of mean temperature. Taking the horizontal

plane average of (2.14), we get

*T() _

where, w = q.k, f = — , 1s the negative verti-

a e
== A= (wT()) (2.15)
which on integration yields
kB +wl=H (2.16)

where H is the vertical heat flux in the fluid.

d
Thus, taking the vertical average (= 711,[ { } dz)
0

of (2.16) we get =

kBm + (WT)w=H (2.17)
where the suffix m denotes the vertical average. From
(2.16) and (2.17), we get

By | (WT)u— (w7 :
'E,I"beﬂ [(w'r),,. (vT)]. (2.18)

m

Eqn. (2.14), using (2.15) and (2.18), becomes

((WT),, — WT
i[._ax:"]ETk,.ﬁ"lW: ((‘ )' ,)_.‘_v...._..h

¢t K
(2.19)
where h = (q.7) T— % (WT) is the zero-average
heat convection term.

Eliminating pressure p in (2. 1), we get
2l

2 (72w L - 2.20
er‘v w)+2!eaz v7tw + L (2.
where,
_ole 9 s X7
al [ax @ VIu+ - (q-V)V] v, 4w
VEget ay*
and
ov U ; ;
{= B gy is the vertical compenent of vorti-

city. From the first two equations of (2.1), welcan get
an equation relating w and { in the form

ﬁ. — T — L LA 2.2
p v_CZQaz— A (2.21)
where,
Z = .._a_ (q_‘\j’) Vo= __a._,, (ql'V) u
ox ) oy
is a zero-average non-linear term.

The local non-linear stability is usually investigated
using the solutions of the form

we=ew, + €W+ w2+ .. )
v=evy, + €vy +Sv2 .ol ;
u=ey+ U +Su;+ ...... .
T e,k ET, 4 &Ta A 00s )
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where ¢ is a constant parameter statisfying the suitable
boundary conditions. The first term in each of (2.22)
corresponds to the linear stability analysis which is
studied in the next section.

3. Condition for the =nset of surface tension driven convection

The condition for the onset of convection can be
determined using the linear stability analysis. This
is connected with the solutions of the first-order equa-
tions in (2.22) where the amplitude varies exponentially
with time. In other words, for first order solutions
to be complete, it is necessary that the parameter € in
(2.22) must be proportional to the amplitude of the
disturbance and this amplitude must be infinitesimal.
Neglecting the non-linear terms in (2.19)-(2.21) and
inaking the equations dimensionless using d as the length
scale, @2/« as the time scale, «/d as the velocity scale and

K
MK 4 the temperature scale, we get

a?'d
Glet —THT — MiafEw =0 3.1)
(@ afot — VL—r2 =0 (3.2)
(6™ afat — VR VEw 1t ;" -0 (3.3)
where,

72 = 40Q% d*[v* is the Taylor number.

The dimensional temperature gradient f(z) must satisfy
1

[_f'(_-') dz = 1.

0

The scales forw and 7 have been chosen such that M,
appears symmetrically in (3.1) and in the boundary
conditions (see below) rather than in just the energy
equation or the boundary condtion. This choice enables
us to establish a variational principle for the present
set of equations and as Finlayson (1972) shows. this
leads to the conclusion that the eigenvalue M, is sta-
tionary in the Galerkin method which we shall apply

below.

We now apply the Galerkin method as d_escrib_ed by
Rudraiah (1982). It is shown that the consideration of
even a single term in the expansions of w and T would
give an accurate estimate for the critical value of M,
in certain cases. In other words, we set w=Aw, and
T—BT, where w, and Ty are suifably chosen trial
functions and A and B are arbitrary constants. We note
that the presence of rotation sets up overstable motions
only for small values of the Prandtl number o (see
Veronis 1966, Rudraiah & Rohini 1975, Rudraiah er al.
1982, Rudraiah and Friedrich 1981). For other values
of Prandtl numbers, however. overstable motion is not
possible and the principle of exchange of stabilities
is valid, i.e., marginal stability is valid. The present
analysis deals with the marginal stability. The marginal
stability solution is the one for which the time deriva-
tives in the differential equations (3.1) to (3.3) are

ZCro.

Assuming the solutions for w and T in the form
£(2) eitiz+m)

equations (3.1) and (3.3) take the form

(D* —a@P w4+ 2 D2w =0, (3.4)

(D —aT+aMf@w=0 (3.5)
where,

D:%’_ and @ = |2 + m2

The boundary conditions for free surfaces with tem-
perature dependent surface tension, each subject to
a constant heat flux, are

w= DM+ MiaT = DT = 0atz =0, 1 (3.6)

Multiplication of (3.4) by w and (3.5) by T and
integration of the resulting equation by parts with
respect to z (from 0 to 1) yields, after making use of
the boundary conditions, the following :

aM’ [ D¥ w (1) T (1) — D* w(0) T (0) }_
--{ DHw ()T (1) — D*w(0) T(O)] X

308 M {D w (1) T(1) —Dw(0) T(0) } =
= — <(D‘5 W) - 3a (D* w)? -
£ Gat ) (DwEa e D

Mﬁ' a <_/'(:) wT> = <(DT)2 1 @ T'“’>
(3.9

3.7)

where the angle bracket <2 = denotes integration
with respect to z from 0 to 1.

Substituting w = Aw; and T = BT into (3.7) and
(3.8), eliminating 4 and B and dropping the suffixes,
we get

M, — I { <(D:i W) L 3@ (D2 w) + (3at 4 72) X
(Dw)? + a* \s'3> (D w(l) D* w(l) —

—Dw(0) D* w (0))] <(Dn 2.} g2 'ra> } /

a2 :m w (1) T (1) — D* w (0) T(O)} %

L rovr > +

3@ Dw ()T (1)— Dw(0) T (0) l (3.9)
We select the trial functions as
w=z2(l—zH)and T = 1 (3.10)




SURFACE TENSION DRIVEN CONVECTION AND TEMPERATURE 43

so that they satisfy all the boundary conditions except
the one given by D?w -|- M}aT—=0atz =0, 1 and a
residual from this equation is included in a residual
from the differential equation. The term on the left
hand side of (3.7) represents this residual.

Substituting (3.10) into (3.9) we get
M _4x% 4 198x? - 7938x + 667> + 37800

45 ¢ + 4  16) @2 =) >

where, x = a*.

For any given f (z), M, attains its minimum when
a2 = x,., where x, satisfies the equation

Bx3--246x2 41584 x— 6672—6048—0 (3.12)

This cubic equation for wave number which determines
the nature of the cells has one real root and two complex
roots, The real root is the critical wave number which
increases with increase in 72, Therefore, the eflect of
Coriolis force is to contract the cells.

(3.11)

3.1. Onset of convection for various temperature
profiles
Case | — Uniform temperature gradient
For uniform temperature gradient that is for the
linear basic temperature profile f (z) = 1, Eqn. (3.11)
takes the form
(2x3 -1 9952 + 3969x - 3372 |- 18900)
i | GC+D
(3.13)
The critical wave number and the corresponding

Marangoni number denoted by (M,,), vary with the
Taylor number asshown in the tablejof section IV,

Case 2 — Piecewise basic temperature profile for heat-
ing from below

When the layer of liquid is heated from below at a
constant rate, we know (Nield 1975) that the non-
uniform basic temperature gradient f (z) is not only
non-negative but also decreases monotonically. Thus.
we are interested in knowing which temperature profile
gives the least M, subject to [ (z) = 0. Recently,
in the absence of Coriolis force, Nield ( 1975) demons-
trated that the piecewise linear profile with f'(z) given by

lefor0<z<e

ii(z) = \ / (3.14)

1 0 fore<z<1

is the appropriate one. Even in the presence of Coriolis

force, we can demonstrate that this piecewise linear

profile given by (3.14) with suitably chosen, 18 thi

appropriate one, at least for disturbances of smal
wave numbers.

Thus, for the bottom heating piecewise linear profile,
substituting (3.14) into (3.11), we get

15 (4x% -} 198x2 -+ 7938x -+ 667° + 37800)

M, = S .
Y 945 (x -+ 4) (5 — 3¢')
Ll d (3.15)

Then the Critical Marangoni number is given by

2A (3.16)

M = W€_2 — 3él)

where, A = (M), for linear profile discussed above.

But
Max (5¢2 — 3¢') = 2.08333333.
Thus, as ¢ increases from 0 to 1, M,, decreases from
o0 to a minimum value of
(M) = 0.96/\ (3.17)

at ¢ = 0.913 and then increases to /\ at e —= 1,

Case 3 — Piecewise basic temperature profile for cool-
ing from above

When the layer of liquid is cooled from above at a
constant rate, the temperature gradient is not only non-
negative but also monotonically decreasing. In this case
the piecewise linear profile is

‘ jﬂ 0Lz —e
f@) =

(et 1 —e<z ol
Substituting this in (3.11), we get
O 2(2x% + 9942 - 3969x - 33¢% - 18900)
63 (x + 4) (— 3e* | 153 — 25¢% + 15¢)

(3.19)

Then the Critical Marangoni number is given by

AN
(Mac)s = Max( — 3e* + 1568 — 252  15¢) °

(3.20)

(3.18)

M,

But

Max (— 3¢t + 156% — 25¢2 -1 15¢) = 2.939637 at
e = 0.482723

Then, (Ma)s = AJ1.47 (3.21)

As expected from the physical grounds, we see that
cooling from above is more effective than heating from
below in causing instability.

Case 4 — Parabolic basic temperature profile

In the absence of rotation Debler & Wolf (1970)
have considered the problem with a parabolic distur-
bance in which the basic temperature gradient is zero
at the lower boundary, for which f(z)=2z. Even in the
presence of Coriolis force, the parabolic basic tempera-
ture distribution leads to f (z)=2z. In this case (3.11)
takes the form :

(Mao)y = AJ1.25 (3.22)
Case 5— Inverted parabolic temperature profile

For inverted parabolic profile f(z) = 2(1 — z) (see
Nield 1975, p. 448) Eqn. (3.11) takes the form ) (
(Mye)s = 1.333 A

As expected on physical grounds this is less destabili-
zing. 4

Case 6— Step-function basic temperature profile

We consider the step-function profile in which the
basic temperature drops suddenly by an amount AT at
z=e¢, but is otherwise uniform, and is of the form

J (@) = ¥z—¢)
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TABLE 1
Values of the Critical Marangoni and wave numbers for various values of Taylor numher

T2 e (Mac), (Mae),
0 1.625 71.967 69.088
107t 1.626 71.974 69.095
10° 1.632 72.045 69.163
10t 1.689 72.743 69.833
102 2.111 78.893 75.737
10% 3.513 116.290 111.638

(Mace), (Mac)s (Mac); (Mac)s

48.957 57.574 95.932 38.383
48.962 57.579 95.942 38.380
49.010 57.636 96.036 38.424
49.485 58.194 96.966 38.796
53.699 63.115 105.165 42.076
79.109 93.032 155.014 62.021

where, e is value of z at which w7 has a maximum and &
denotes the Dirac delta function. In this case (3.11)
takes the form

M. o xS 19822 4+ 1984x 4 6612 -+ 9450
‘o 18790 (x + 4) (2 — &%)

Then the Critical Marangoni number is
2/

Mur -

15 Max (e — &)
which has & minimum value

(Mac)s = |—/§ﬁ attained at e = 0.707 .

Thus, the most unstable basic temperature profile,
for which f ()= 0 everywhere, is the step-function profile
for which the step occurs at the level at which w is
maximum, since 7 is constant in our approximation.

4. Conclusions

The single-term Galerkin method provides a quick
means for obtaining the above results in the presence of
Coriolis force with different basic temperature profiles.
The results (3.13) and (3.17) give the critical wave-
numbers and the corresponding Marangoni numbers
which vary with the Taylor number. These are numeri-
cally evaluated for different values of 7# and the results
are tabulated (Table 1).

When the basic temperature gradient is uniform, the
condition for the onset of convection driven by surface
tension when one boundary is rigid and the other free
was investigated by Sarma (1979) in the presence of
Coriolis force. He has obtained exact analytical solu-
tions which are mathematically cumbersome and the
Critical Marangoni number for different values of 2=
are obtained from them. Recently, Rudraiah (1982)
discussed convection driven by surface tension with
non-uniform temperature gradient in the presence of
Coriolis force when one of the boundaries is rigid.
However. in meteorological applications both boundaries,
are usually free. Therefore, in this article the Critical
Marangoni numbers are obtained when both boundaries
are free using single term Galerkin expansion method
and the results are shown in the Table 1. We found that
(Maods < (Maods < (Mye)y < (Mae)s < (Mae)y < (Mac)s-
Thus, the most unstable basic temperature profile is the
one for which the temperature gradient is the Dirac
delta function. The physical reason is that at the level

= = ¢ wT is a maximum. Since T is constant is our
analysis w has to be maximum so that Dw = 0. Then
from the equation of continuity (2.2) it follows that the
horizontal component of velocity which is proportional
to Dw is zero, i.e., the velocity is vertical. Thus the
entire convection will be transported upwards and hence
the step-function profile is more unstable. The most
stable one is inverted parabolic temperature profile.

Experimental work to confirm the present results
is needed. We suggest that using a solution, such as
sugar solution whose concentration acts as the diffusing
quantity rather than heat, would be convenient to carry
out the analysis, since the condition of constant mass
flux could then be satisfied without any effort.
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