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Use of linearised quasi-geostrophic numerical model
for evaluation of truncation errors®
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ABSTRACT. A linear. quasi-geostrophic, multilayer, numerical model which has been developed
in an earlier study (Mishra & Salvekar 1980) for investigating baroclinic instability mechanism of
mean monsoon zonal flow, is used here to oblain vertical and time truncation errors in growth rate
and phase velocity of a baroclinic unstable wave that arise due to finite difference approximations.

1. Introduction

The general governing equations for atmospheric
motions are non-linear in nature, whose analytic solu-
tions are not known except for a few very simplified
cases of one-dimensional motion. In general, even for
lincarised system of equations analytic solutions are
not always possible because solutions of differential
equations are known only for the cases when their
coefficients arc constants or have some particular
functional forms. It is obvious from above discussion
that numerical techniques arc indispensible for obtain-
ing the solutions of lincar and non-licar equations of
various atmospheric problems. For the purpose of
obtaining numerical solutions, the differential equa-
tions are replaced by corresponding set of difference
equations, But such procedure always involves trun-
cation errors,

The accuracy of various predicted meteorological
parameters obtained from time integration of Numeri-
cal Weather Prediction model is limited by the pre-
sence of truncation errors in the model in addition to
the other physical factors, For a meaningful predic-
tion of the atmospheric motions by the models require

*The paper was presented in the symposium *Indo-French School on recent advances in Computer Techniques in Meteorology, Bio-

a rough estimate of truncation errors. Estimation of
truncation errors as their first approximation can be
obtained with the help of linear models, Wiin Nielsen
(1962) has obtained vertical truncation error for a
quasi-geostrophic linear model. Gates (1959) found
horizontal and time truncation error involved in a
numerical solution of barotropic vorticity equations.
Rosenthal (1964) also compared analytical and nu-
merical solutions by integrating the quasi-geostrophic
linear model for simple cases, All these studies are
pertaining to the mid latitude atmosphere. But no
such study is made so far for the disturbances
embedded in the tropical zonal flow.

Linear numerical models can be used for the study
of dynamic instability, estimation of numerical truca-
tion errors in space and time and propagation of ini-
tial error in time. In the present study the quasi-
geostrophic  (Q.G.), numerical, linear model, which
is developed for baroclinic instability study of mean
monsoonal zonal flow by Mishra and Salvekar (1980),
hereafter referred as MS, is used to obtain vertical
truncation errors in growth rate and phase .velocity.
General procedure for obtaining vertical and - time.
truncation error is discussed and percentage errors in
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phase velocity due to vertical and time truncation are
obtained explicitly.

2, The Q.G. numerical model

The Q.G. numerical linear model used in the present
study is described in detail by MS where a wave in
zonal direction superimposed on a basic zonal
flow U was considered. The numerical model is based
upon the potential vorticity equation. The atmosphere
is divided into N layers in vertical each of uniform
thickness in pressure (. p = p,/N). The basic zonal
flow U and stream function ¢’ are defined in the middle
of layers while at the levels static stability ¢ is consi-
dered. The governing linearisad potential vorticity
equation (in standard notations) :
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is applied at the middle of each layer using centred
difference scheme to the pressure derivatives, and the
boundary condition :

( ¢ T ) C;";'_’ = 0 at p=0 and p=p,— 1000 mb
2

ot ax
(2)

is incorporated while applying Egn. (1) at the top and
bottom layer. By this numerical procedure the poten-
tial vorticity equation. which is a partial differential
equation, reduced to a system of 2N coupled ordinary
differential equations in ¢, (1). ¢, (2). .... &, (N) and
s (1), 43 (2), vovy ¥ (N) which can be written in matrix
nolation as
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where L=1, 2 and LL=3—L. The Aand Bare N <« N
matrices depending on basic state parameters, ‘4" is the
zonal wave number (k= 27/\, A-=zonal wavelength)
and ¢y (1), ..., ¢ (N) are amplitudes of the wave
perturbation of sine and cosine waves at each laver.
Since the linearised model is considered. the system of
differential equations can easily be solved by inverting
the matrix ‘B’ instead of using the time consuming
iterative scheme, which is rather essential for non-linear
models. Time integration of the model is performed

using *‘Modified Euler Backward’ scheme for the first
time step and ‘Leap-frog’ scheme for the subsequent
time steps.

The model has been used successfully for the study of
baroclinic instability of Indian monsoonal zonal flow
(MS). It has been also shown that 20 layers in vertical
are sufficient for this purpose. In this numerical model,
the parturbation vertical velocity is obtained by applying
thermodynamic energy equation at the levels. Its finite
difference form yields (N-—1) ordinary differential équa-
tions which can be written in matrix form as :
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where C and D are (N—1) = N matrices depending on
basic state parameters, Perturbation temperature field
at levels is obtained from the hydrostatic balance,

3. Procedure for estimation of truncation errors

The general procedure for estimation of truncation
error is to find the difference of the solution of diffe-
dential equation and that of corresponding difference
cquation. But this direct method is not applicable for
non-linear equations as well as for some lincar equa-
tions also, because analytical solutions are available
only for few simple lincar equations. Therefore, we
have to follow the indircet method. As the grid length
(space and time) decreases the numerical solution
becomes closer to that of analyticals solution.

3.1. Time truncation error

Analytical solution of Eqn, (1) is possible only
for the simple case when basic parameters does not
change with height. But the actual atmospheric situa-
tion are not so simple. In the case of monsoon, situa-
tion, vertical profile of U (Mishra 1980) and o are
not lincar and the coeflicients of the governing Eqn.
(1) cannot be expressed in the particular forms so as
to get analytical solution of Egn. (1). Thercfore, we
have to use cengred difference scheme for vertical
derivatives.,

Consider perturbation stream function ¢’ of the form
B pot) = oy (po 1) cos kxiy (p, 1) sin kx (5)
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Therefore, combining the system of 2N differential
equations given by Eqn. (3) can be written as :
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where o, %, &%, ..., ¥x% Yyu®. ..., Yoy® are res-
pactively, &, (1), ¢, (2), ..,y (N), Y (1), .. .., (N)
and the matrix S of the order 2N > 2N is given by :
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The system (6) can be integrated analytically w.r.t.
time by assuming the solution of the form exp (—kct),
we get @

(S—c 1) g* =0, (7)

Once the eigenvalues ¢ are known, the matrix of the
eigen vectors can be formed and the solution of ¥
can be obtained depending on initial value of ¢* at
each layer. Similarly the system (6) can be numeri-
cally integrated w.r.t. time and comparison of these
two solutions of Eqn. (6) gives time truncation error;
because vertical truncation error in both cases (due to
centred difference scheme) is common. Further, in
order to minimise time trucation error, numerical
techniques can be used having more accuracy, e.g.,
Bengtsson (1978) has used 4th order Rung-Kutta time
integration scheme.

3.2. Vertical truncation error

We have seen that analytical solution of Eqgn. (1)

is not known. Therefore, as U=U (p), ¢—=o (p) and
& (p, 1y) atinitial time 1=1¢, are known, vertical deriva-
tives of U, o and ¢ can be substituted analytically and
the tendency dy'/dt can be obtained. Further differen-
tiate Eqn. (1) w.r.t. °¢" and substitute for &'/dr as
obtained from the previous procedure to get o2 y'/dt 2
and so on. Continuing this process higher order
derivative of ¢’ can be obtained. Now ¢ ai next time
step t=# (say t,=1t, + /t) can be obtained using
Taylor’s expansion §
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having sufficient number of terms so that error due to
/.t is negligible and the time derivatives at r—1, can be
substituted from those obtained from the Eqn. (1)
considering the equation in g¢'/¢/. Now ' obtained
by this process contains no vertical as well as time
truncation error. If this solution is compared with
that of obtained from the system (6) analytically inte-
grated w.r.t. time gives us vertical truncation error.

4, Truncation errors in phase velocity
Analytical solution of Eqn. (1) is possible only for
the most simple case ol constant basic parameters
(U--const., o —const.). In this simple case consider-
ing ¢ = ¥ (p) ™ 5 Eqn. (1) reduces to :
kAT P
s+ q¥ =
2 / (
where,
q = (B, ‘k“U—I—kzc)/{U—c) {';L 9)

For ¢ >0, solution of Eqn. (8) which satisfies the boun-
dary condition (2) is given as ¥ = a cos (/¢ p)

Therefore,
Vg Py= iy i=0,1,2,..;

Hencz, the phase velocity ¢ in the exact form can be
obtained from (9) as :

L (10)

¢c=U— l +nfa
where,
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which is same as obtained by Wiin Neilsen (1962).
Thz solution for ¢<<0 gives the phase speed same as
obtained for n=0 in the previous case.

To evaluate vertical truncation error in the phase
velocity, Eqn. (1) is to be integrated analytically w.r.t.
timz and numerically w.r.t. p using centred difference
scheme and considering :

m AP .
Wi= A cos TP it (a~et
Po

suffix %" is for vertical grid point,
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TABLE 1
Time trupcation error (")

A (km)
n 1,500 5,000 10,000 1,500 5,000 10,000
At==1hr t=1/2 hr

1 .263 L0656 0 065 .0l6 .0

2 .279 L1093 006 .069 .027 002

3 .299 L1577 026 074 .039 007

5 .33 .225 .05 082 056 L013

8 3557 .269 066 .088 069 016
10 364 ,282 069 .090 .070 017

Then the phase velocity ¢ ( -¢, say) takes the form :

i 2/ it nmw o p
e ;’)"_k'-' ( I — cos N )
or .
ep = U— . 4f _B::_, ( nm p)
o (N p) Kk Po
Using sine series and further manipulation, ¢, becomes,
= ¢+ (E)p (12)
where,
4ok O+
Ex = warwa || eont ]
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¢ is given by (10) and « is given by (11).

To find truncation error due to vertical and time deri-
vatives. centred difference scheme for both the deri-
vatives in Eqn. (1) is used considering :
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suffix *m’ is for time grid point.

Then the phase velocity ¢ (- ¢, say) can be obtained

as @

TABLE 2
Vertical truncation error (%))

AMkm)
n 1,500 5,000 10,000 1,500 5,000 10,000
N=5 N=10
I .02 .16 1.4 01 .04 .3511]
2 2 1.4 5:3 .06 .35 1.26
3 .8 3.5 8.4 2 F 1.9
5 2.7 8.7 15.0 0.6 1.7 2.6
8 7.7 26.11 56.2 1.27 2.8 3.4
10 10,78 43.1 181.2 1.76 3.74 3.75
N=25 N=25
1 .008 01 155 0 0 .056
2 1 156 &7 .0 056 .2
3 .13 375 .83 .0 | .297
5 i .74 1.07 . | .26 .374
8 W5 1.07 1.27 2 36 42
10 .6 1.25 1.415 .21 .4 .44
=g sin™! (k. /\t.ep) (13)

where ¢, is given by (12).

The truncationerror due to time alone can be obtained
using ‘Leap-Frog’ scheme for time derivatives and
integrating the Eqn. (1) for constant basic parameters
the phase velocity ¢(— ¢, say) can be written as :

€ = Rl 1 sin™! (k. At.c) (14)

where ¢ is given by (10).
The expression (14) is same as (13) except ¢, is replaced
by ¢ to eliminate vertical truncation error.

5. Results

Truncationerrors in growth rate and the phase velocity
of the baroclinically unstable short (A-—=1500 km),
intermediate (A=35000 km) and long (A==10000 km)
waves embedded in the mean monsoonal zonal flow
are odtained.

5. 1. Constant basic parameters

In the previous study (MS) it is found that short
unstable waves are essentially confined below 500 mb
while the waves having wave-length 3500 km are
above 500 mb., Therefore, the constant values of
zonal wind U and inverse statistic stability ¢~ for
mean monsoon situation are odtained, for the unstable
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Fig. 1. Vertical profiles of mean monsoonal zonal wind U (ms™)
and inverse static stability ™! (mb* s* m™)

waves, as their averaged values (rom the respective
active region, and are given as :

For A= 1500 km, U= 10 ms*, o '~60 mb*s* m *

For A= 5000 kmY _
& U= —=30ms™ o
= 10000 km J

12 mb?* s m™*

Further, using expressions (10), (12) and (14) vertical
truncation error (c;—¢) and time truncation error
(¢, —¢) in the phase velocity are computed choosing
time step (/At) as 1 hrand 1/2 hr and varying number
of layers (N) in vertical from 5 to 25. Percentage errors
due to vertical and time truncation are presented in
Tables 1 and 2 respactively. The error due to vertical
truncation increases with increasing wave-length (A),
increasing cosine mode (1) and decreasing number of
layers (N) in vertical. The time truncation error
decreases with increasing wave-length (A), decreasing
cosine mode (1) and decreasing the time step (/A1)

5.2. Variable basic parameters

The vertical profile of mean monsoonal zonal flow
and inverse static stability presented in Fig. | are
obtained analytically such that,

- A — Pw s {(P— P8
U=Uy sech® (P— 2 )—'Uﬂ sech* (—P-)

2

TABLE 3

Akm)
N 1,500 5,000 10,000

(a) 9, error in growth rate
15 14.796 5.3557 6.336

20 12.0 . 684 1.3226
(b) % error in phase velocity
15 1.673 L6756 L5383

20 .386 .09 .08

and
o t=ap -+ b

where Uy, Ugand Py, Py are magnitudes and posi-
tions of westerly and easterly maximum wind respecti-
vely. The constants a, b, Py and P, are chosen such
that the analytical profiles will have close resemblance
with actual observed profiles. The mathematical
representation of U used here fits more exact to the
observed profile of U than that of used in MS.

For computation of growth rates and phase velocities,
the expressions are used as given in MS. In this case
the vertical truncation error is obtained by indirect
method. Results for 25 layers in vertical are assumed
to be closer to that of analytical solution. Also from
the baroclinic instability study it was found that mini-
mum 15 levels in vertical are required for the wave to be
untable. Therefore, vertical layers (N) are chosen to
be 15, 20 and 25. Tables 3(a) and 3(b) give percentage
error in growth rate and phase velocity due to vertical
truncation after comparing the results of 25 layers to
less number of layers in vertical. The results show
that vertical truncation error in phase velocity is much
smaller than that in growth rates.

6. Conclusion

Simple expressions for quick estimation of vertical
and time truncation errors in phase velocity, for the
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simple case of constant basic parameters using linearised
quasi-geostrophic numerical model are obtained. The re-
sults show that time (vertical) truncation error decreases
(increases) with increasing wave-length. The case of
variable basic parameters show that the truncation
error in growth rate is much larger than that in the
phase velocity which indicates the importance of num-
ber of layers in vertical in the instability study.
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