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सार – लम्बे समय से जलवाय ुववज्ञानी और कृवि मौसम ववज्ञानी का मुख्य अनसुंधान का क्षेत्र विाा के आकँडो की 
सॉख्यकीय मॉडललगं करता रहा है। ववशेिकर शीत सप्ताह के दौरान अक्तूबर शनू्यमान की उच्च प्रततशतत्ता को शालमल 
करते हुए लघ ुअवधध विाा का मापन ककया जाता है। शून्य से बढे हुए मॉडलो का मॉडललग में ऐसे आॉकडा सेटों का 
प्रायः प्रयोग ककया गया है। इस शोध में हमने शून्य से धातांकीय रूप में बढे हुए ववतरण का प्रयोग करके साप्ताहहक 
विाा आॉकडा मॉडल का तैयार करने का प्रयास ककया है। हालांकक मौसम ववज्ञातनयों द्धारा अधधकतम संभाववत अनमुान 
को प्रायः प्राथलमकता दी जाती है। इस शोध पत्र में कुछ कलमयों के बारे में चचाा की गई है। इसललये हमने बायेलसयन 
मॉडल पर ववचार ककया है। अथाात हमने माना कक तनयत मात्राओ के बजाय मॉडल के अतनयलमत प्राचल होगे जसेै कक 
अतघकतर प्रयास में होता है। जसेै कुछ बायेलसयन ववशलेिण के वास्तववक भागों में है। हमारी मुख्य चचाा की प्राथलमकता 
प्राचलों के  उत्तरोतर ववतरणों पर आधाररत व्यततकरण और उतरोन्तर संभाववत ववतरणों पर आधाररत सभंाववत विाा 
मात्राओ ंकी ववलभन्न प्रततशत की गणना को दी है। भारत में धगरडीह में विा 1969 से 2009  तक के ललये गये विाा 
आॉकडों के सेटों का हमने सप्ताहहक ववशलेिण ककया है पवूी पठार क्षेत्र में लसचांई सवुवधाओ ंमें कमी के कारण केवल 
विाा के पररमाण  कृवि तनभार  होती है। हमने 10%, 30%, 50%, 70%, 90%, संभाववत विाा मात्राओ ंको उपलब्ध कराया है 
जो कृवि के कामों पर ववशेि कदम के ललये सटीक सप्ताह को तय करने में मदद करेगा।   

 

 ABSTRACT. Statistical modelling of rainfall data has been a major research area of the climatologists and agro-
meteorologists for quite a long time. Short-period rainfall measurements often include a high percentage of zero values, 

particularly during the winter weeks. Zero-inflated models are often used in modelling such datasets. In this paper, we 

attempt to model weekly rainfall data using zero-inflated exponential distribution. Though a frequentist approach (mainly 
maximum likelihood estimation) is often preferred by meteorologists, it has a few shortcomings discussed in this paper. 

Hence, we consider a Bayesian model, i.e., we assume the model parameters to be random instead of fixed quantities as 

in a frequentist approach. As some obvious parts of a Bayesian analysis, we discuss the prior choices, inference based on 
the posterior distributions of the parameters and calculations of the different percentage probability rainfall amounts 

based on the posterior predictive distributions. We analyze weekly rainfall dataset for the years 1969-2009 collected at 

Giridih, India. In the eastern plateau region, agricultural operations depend solely on the rainfall quantities because of the 

lack of irrigation facilities. We provide 10%, 30%, 50%, 70%, 90% probability rainfall amounts which would help in 

deciding the accurate week for a particular step of an agricultural procedure. 

 
Key words – Zero-inflated exponential distribution, Bayesian paradigm, Prior distribution, Posterior distribution, 

Posterior predictive distribution, Quantiles. 
 

1.  Introduction 

 

 The percentage of rural population in India is 

veryhigh (68.84% in 2011; source: http://censusindia. 

gov.in) and the main source of income and employment in 

the rural areas is agriculture. Forecasting of different 

meteorological parameters, mainly rainfall, is very 

important, particularly in the rain-fed agricultural 

ecosystem. Lack of proper irrigation system often makes 

the agricultural practices solely dependent on rainfall. An 

estimate of the future rainfall amount becomes a necessary 

tool before implementing any step of an agricultural 

procedure. Thus, modelling short-period rainfall,                  

e.g., weekly data is very important from this perspective. 

 

 In the literature, several studies are available for 

rainfall analysis and the commonly used probability 

models are- exponential (Burgueño et al., 2005 & 2011; 

Taewichit et al., 2013), gamma (Husak et al., 2007; Liang 

et al., 2012; Krishnamoorthya and León-Novelo, 2014), 

log-normal (Kwaku and Duke, 2007; Sharma and Singh, 

2010), Weibull (Burgueño et al., 2005; Lana et al., 2017), 
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Pearson Type-III/V/VI (Hanson and Vogel, 2008; Khudri 

and Sadia, 2013; Mayooran and Laheetharan, 2014), log-

logistic (Fitzgerald, 2005; Sharda and Das, 2005). In the 

case of short-term rainfall such as weekly rainfall, for 

most part of the globe, there is a high chance of the 

observation being zero, considering not only the wet 

weeks but also the dry weeks. Thus, an obvious choice for 

modelling short-period rainfall is some zero-inflated 

positive continuous distribution recently studied by 

Muralidharan & Pratima (2017) under practical scenarios 

including rainfall modelling. The zero-inflated 

exponential distribution has been used under different 

practical scenarios by several authors, e.g., Kale and 

Muralidharan (1999), Muralidharan (1999) and Velarde  

et al. (2004). Muralidharan and Kale (2002), Singh et al. 

(2009) and Kumar et al. (2015) have analyzed the rainfall 

data based on zero-inflated gamma distribution while 

Muralidharan and Lathika (2005) have used zero-inflated 

Weibull distribution for modelling rainfall data collected 

at Jalgaon and Coimbatore divisions in India during a 10 

year period from 1961 to 1970. Hazra et al. (2014) have 

considered different types of the zero-inflated positively 

continuous distributions for modelling Nakshatra-wise 

rainfall data of the eastern plateau region of India. 

 

 As of the authors’ knowledge, all the papers 

implementing zero-inflated positively continuous 

distribution models are based on the frequentist paradigm, 

i.e., the model parameters are assumed to be unknown 

fixed numbers and estimated in terms of maximum 

likelihood estimates (MLEs) in general. In comparison, 

the parameters in Bayesian models are assumed to be 

random and inference about the parameters are drawn 

based on the posterior distributions, i.e., the conditional 

distributions of the parameters given the observed data. 

Bayesian methods are more robust in general, widely used 

among the statistical community (Gelman et al., 2014) 

and often lead to more meaningful estimates as discussed 

in this paper. Here we model weekly rainfall data for the 

years 1969-2009 collected at Giridih, India, using zero-

inflated exponential distribution in a Bayesian framework. 

In the eastern plateau region of India, agricultural 

operations depend solely on the rainfall quantities because 

of the lack of irrigation facilities. Hence, the contribution 

of this paper is two-fold, in terms of the methodology as 

well as the analysis. We provide 10%, 30%, 50%, 70%, 

90% probability rainfall amounts which would help the 

agricultural practitioners in deciding the accurate week for 

a particular step of an agricultural procedure. 

 

2. Materials and method 

 

 The Data : Weekly rainfall data of Giridih, India 

(24°18' N, 86°30' E) for 41 years (1969-2009) are used in 

this study. The daily rainfall data have been collected 

from the Damodar Valley Corporation (DVC) for the 

period 1969-1989 and by the Indian Statistical Institute, 

Giridih, for the period 1990-2009. Weekly rainfall totals 

are calculated based on the definition of Standard 

Meteorological Weeks (SMW) provided in Table 1 of 

Chand et al. (2011). Rainfall data are collected using a 

rain gauge as specified by the India Meteorological 

Department (IMD).  

 

 The model: Short-period rainfall is a random variable 

which is non-negative, continuous on the set (0, ∞) and 

has a positive probability of having zero rainfall mainly 

because of considering short-period rainfall over pre-

monsoon and post-monsoon months. Suppose   = total 

rainfall on a specific week. We model Y as follows: 

 

   
                  

                    
  

 

 For the random variable   we consider the 

exponential distribution with rate  . So, the cumulative 

distribution function (CDF) of   is of the form :  

 

                                      

 

 The goodness-of-fit of this model can be judged 

based on Q-Q plots which would confirm whether the 

modelling assumptions holds quite well or not. Also, we 

can check the quantiles of the data as well as the model 

after censoring the zero values which is valid because the 

model considers the zero and non-zero parts separately 

(Hazra et al., 2014).  

 

 Significance of the model parameters : Here the 

parameter  denotes the probability of observing a wet 

week, i.e.,            . Thus, a larger value of p  

indicates higher chance of observing a wet week. Also, for 

any amount of rainfall   mm,                . Thus, 

the larger is the rate parameter  , the probability              

        decreases, i.e., the chance of observing high 

rainfall amount decreases with increase in  . 

 

 Choice of prior : In Bayesian paradigm, we assume 

that the parameters are also random. For the purpose of 

Bayesian inference, we put priors on parameters   and  . 

To make computation easy, we choose conjugate priors 

(i.e., the prior distribution and the posterior distribution 

belong to the same class. For more details, please refer to 

Ghosh et al. (2006) for both the parameters,                               

i.e.,                 and                 . The 

density functions are given by : 
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Fig. 1. Box plots and the corresponding nonparametric estimates of weekly rainfall total at different probability levels for 52 weeks (top 

panel). Q-Q plots for SMW22, SMW32 and SMW42 respectively (bottom panel) 

 

 
 

     
  

  

     
           

  We also assume that  and   are independently 

distributed. The hyper-parameters, i.e.,             are 
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assumed  to  be  known.  We consider them to be         

                    , i.e.,                

              and                       so that     

E( ) = 1 and Var( ) = 100, which is large enough. The 

idea for choosing such hyper-parameter values comes 

from the fact that in case we haven’t observed the data and 

as   can take any value in [0, 1], we assume that it has a 

homogeneous distribution over [0, 1]. Small mean                   

and large variance of   flattens its distribution enough                

and hence these choices are non-informative           

(Syversveen, 1998). 

 

 Posterior distribution of parameters : For a 

particular week, suppose            denote the data for n 

years. With the priors we consider, the                               

posterior distribution of    is,                   
                

               
            and 

the posterior distribution of   is                  
                     

              
 
           . 

Here   denotes an indicator;        if the event   

happens and 0 otherwise. The derivations and more 

mathematical details are moved to Appendix. We consider 

posterior means as the estimates of   and   and call them 

“Bayesian estimates” henceforth in this paper. Thus, the 

estimates are : 

 

    
           

     

   
  

 

     
           

        

   
 
        

 

 

 In comparison, the MLEs are given by             

       
           

   

 
 and        

           
   

   
 
   

. Thus,    

the estimates of both the approaches are close but not 

exactly the same. Along with the Bayesian estimates, we 

provide 95% credible regions (i.e., the upper and lower 

2.5% quantiles of the posterior distributions) which 

indicates that the parameters lie within the corresponding 

intervals 95% of the time (The inference is different from 

that of 95% confidence intervals in a frequentist                   

context where a 95% confidence interval means the 

intervals contain the true value of the parameter 95% of 

the times). 

 

 Posterior predictive distribution : For a future 

observation   , the posterior predictive distribution is 

given by the conditional density of   given the data, 

i.e.,                 . Here the posterior predictive 

distribution is zero-inflated Lomax distribution with shape 

parameter          
         and scale 

parameter     
 
         with zero-inflation parameter 

         
     

   
. The mathematical details are provided in 

Appendix. The amount of       probability rainfall on 

each week is given by the        quantile of the 

posterior predictive distribution. 

 

3. Results 

 

 The box plot of the data for 52 weeks are provided in 

the top-left panel of Fig. 1. For SMW 1-15 and 44-52, the 

boxes are concentrated at zero with only a few positive 

outliers. For SMW 23-39, the boxes do not include the 

zero value and exhibit a few very high positive valued 

outliers. For other weeks, the boxes do not include zero 

value and display similar patterns of positive outliers. 

Thus, in an overall sense, the distribution is positively 

skewed with inflation at the value zero for each week. The 

10%, 30%, 50%, 70%, 90% probability rainfall amounts 

based on the data (before fitting a parametric model) are 

provided in the top-right panel of Fig. 1. Even for the 90% 

probability level, we note that the rainfall totals are                

non-zero for the weeks 25-38 and thus, it is highly                 

likely to observe a wet week during that period. For the 

10% probability level, the rainfall totals are non-zero for 

the weeks 1, 47, 49-51. Thus, it is highly unlikely to 

observe a wet week during these weeks. For 50% 

probability level, the weeks 19-41 show non-zero amount 

of rainfall. 

 

 For three weeks SMW 22 (pre-monsoon), 32 

(monsoon), 42 (post-monsoon), we provide the Q-Q plots 

in the bottom panel of Fig. 1 which shows that an 

exponential distribution gives a justified fit for the non-

zero observations and hence, we fit the Bayesian zero-

inflated exponential distribution model separately for each 

week. The Bayesian estimates of   and   for each SMW 

are provided in the top panel of Fig. 2. The 95% credible 

regions are also provided along with the posterior means. 

The estimates of   remain above 0.5 for the weeks 19-41, 

same as the wet weeks at 50% probability level and 

remain above 0.9 for the weeks 25-37 while the wet weeks 

at 90% probability rainfall are SMW 25-38. Also, the 

weeks with the estimates of   less than 0.1 conforms to 

the dry weeks at 10% probability rainfall. We also notice 

that the estimates of   drop soon after the monsoon period 

and again increase for the weeks 51-52. The estimates of   

are minimum for SMW 26 with value 0.0107 mm
-1

 while 

maximum for SMW 50 with value 1.5827 mm
-1

 and 

remains less than 0.02 mm
-1

 for the weeks 25-40. For the 

weeks 27 and 31, the Bayesian estimates of   are 0.9767, 

while the corresponding frequentist estimates (MLEs, i.e., 

the proportions of wet weeks) are 1. The standard errors of 

the MLEs are zero while the standard deviation of the 

posterior distribution is non-zero (2.27×    ). For the 

parameter  , the Bayesian estimates and the MLEs 

conform after rounding the results till three decimal 

places. 
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Fig. 2.  Bayesian estimates of and for 52 weeks. The dashed lines show the 95% credible regions. The red lines show the corresponding 

maximum likelihood estimates (top panel). The model based estimates of weekly rainfall total at different probability levels 

(bottom panel) 

 

 

 
 The amount of estimated weekly rainfall totals based 

on our model at different probability levels (10%, 30%, 

50%, 70%, 90%) based on the posterior predictive 

distribution are provided in the bottom panel of Fig. 2. At 

the 30% probability level, SMW 22-41 receive more than 

200 mm rainfall with maximum for SMW 26 (109.37 

mm). Starting from SMW 23, aggregate of SMW 23-26 

shows a total of around 200 mm rainfall. At the 50 % 

probability level, SMW 25-39 receive more than 200 mm 

rainfall with maximum for SMW 26 (60.66 mm) again. 
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Starting from SMW 25, the aggregate of SMW 25-28 

shows a total of around 175 mm rainfall. 

 

4. Discussions 

 

 The amounts of weekly rainfall amounts at different 

probability levels in Figs. 1 and 2 match quite accurately 

indicating that the model fits the data well. The standard 

errors of the MLEs are zero for the weeks 27 and 31, 

which is never desirable for a statistical model. On the 

other hand, the standard deviation of the posterior 

distribution is non-zero (2.27×    ). Thus, the Bayesian 

estimates are more reliable and also more meaningful. The 

frequentist and Bayesian estimates of   almost coincide 

due to our flat (high variance) prior choice for  . In case 

some prior information about the parameters are available 

(through the elicitation of prior; refer to Ghosh et al., 

2006), it can be incorporated and the estimates would be 

significantly different in that case. The estimates of   

remain less than 0.02 mm
-1

 for the weeks 25-40 indicating 

a high chance of a large amount of rainfall total during 

these weeks given that a positive amount of rainfall occurs 

and can be considered to be peak-monsoon period 

necessary for agricultural purposes though the chance of 

positive rainfall decreases sharply at the last weeks. A 

frequentist approach indicates certain positive amount of 

rainfall for the weeks 21 and 37 while the chance of 

rainfall is high but not certain in case of Bayesian 

approach. These weeks are mainly during the peak-

monsoon period and for water requirement for kharif 

crops, there should be a minimal availability of irrigation 

as otherwise it may lead to crop failure. 

 

 A few studies about rainfall water management in 

the eastern plateau region are available. For example, 

Singh et al. (2009) have studied the frequencies of 

drought in nearby Ranchi region based on the departure of 

aridity index, the percentage ratio of the total annual water 

deficit to the total annual water need. They have 

categorized the study years 1970-2004 into moderate, 

large, severe and disastrous drought years and also 

concluded the weeks 26-39 to be the water surplus weeks 

which conforms with our findings as well. Singh et al. 

(2010) have performed a water balance study for the 

Ranchi region with concluding about high coefficient of 

variation of monthly rainfall. The average, maximum and 

minimum lengths of growing season are found to be 18, 

12 and 28 weeks respectively and the authors have 

suggested cultivating short duration paddy variety Birsa 

Gora-101, maize, i.e., Devki, Ganga-11, Suran and kharif 

pulses. Availability of 12 weeks during the peak-monsoon 

period conforms to our results and hence short duration 

crops are preferable for Giridih as well. Kumari et al. 

(2014) have opted a preliminary data analysis of weekly 

(along with monthly, seasonal and annual basis) rainfall in 

the nearby Palamau region of Jharkhand for the years 

1956-2011 without considering any statistical modelling 

and have concluded about most frequently observed 

droughts during weeks 23-26 and 37-40. They have 

suggested short duration, low water requiring but high 

value crops like maize, pulses, oilseeds to be opted in 

order to minimize the production risk. Our analysis shows 

that the amount of weekly rainfall has steep upward and 

downward trends for the weeks 23-26 and 37-40 

respectively which conforms with the findings of Kumari 

et al. (2014) as well.The cultivated area of Jharkhand is 

about 1.8 million ha and only 9.3% of these areas have 

irrigation facilities (Source: www.icar.org.in). Some major 

concerns are- drought in uplands, low soil fertility and 

low-coverage of high yielding varieties. As the water 

management situation in Giridih conforms to other studies 

at the nearby regions, we also suggest drought-tolerant 

short duration varieties of rice like Vandana, Anjali, Birsa 

dhan 109; 110, maize, pulses etc.for cultivation. 

 

5. Conclusions 

 

 We propose a mixture probability model of two 

distributions, i.e., degenerate at zero and a one-parameter 

exponential distribution for each week which takes care of 

the dry spells. Rather than the frequentist approach of 

finding MLEs, we recommend the Bayesian paradigm for 

its many-fold advantages - we believe the paradigm to be 

promising enough for modern statistical scientists, 

particularly for statistical climatologists (Clark and 

Gelfand, 2006). 

 

 Banik et al. (2002) analyzed weekly rainfall data of 

Giridih using a two-stage Markov chain and the drought 

index was calculated to be 0.16 indicating severe drought-

proneness. Hence, a proper statistical modelling is very 

important for a proper crop planning. The MLEs of the 

zero-inflation parameters are just the proportions of wet 

weeks while the Bayesian estimates are not and always 

have positive standard deviations. The estimation of the 

zero-inflation parameter using MLE leads to zero standard 

deviation for the weeks which are wet for all the years 

considered and hence, to a less meaningful interpretation 

and possibly erroneous crop planning. In this situation, a 

frequentist approach indicates certain positive amount of 

rainfall while in case of Bayesian approach, the chance of 

rainfall is high but not certain, a more realistic situation. 

As these weeks are mainly during the peak-monsoon 

period and water requirement for kharif crops is 

necessary, there should be a minimal availability of 

irrigation facilities even on these weeks according to our 

analysis while a MLE approach says the irrigation 

requirements are not necessary for these weeks. Our study 

indicates that a complete ignorance about the irrigation 

facilities even during the peak-monsoon may lead to crop 

http://www.icar.org.in/
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failure. The reservoirs of the DVC can be considered as 

possible sources of water during these weeks in case there 

is no rainfall. 

 

 From the application point of view, we have 

provided the estimates of rainfall at different probability 

levels and have drawn conclusion regarding the cropping 

times and the choice of varieties. Aggregate rainfall 

amount of SMW 23-26 is sufficient before sowing or 

transplanting on SMW 27 and it is fine for long/medium-

duration rice cropping. The aggregate rainfall of SMW 25-

28 is fine before sowing or transplanting on SMW 28 or 

29 and it is fine for short-duration rice cropping. Thus, 

opting a short-duration rice cropping has less chance of 

crop failure due to scarcity of rain water. The aggregate of 

weekly rainfall totals for the weeks in late September and 

early October is sufficient for the second crop (winter 

crop). It can be grown in the eastern plateau area, but 

proper irrigation is required as the rainfall amount drops 

sharply after that period. Hence, the reservoirs of the DVC 

can be considered as sources of water during the second 

week of October in case there is no rainfall. 

 

 For avoiding computational complexities, here we 

have confined ourselves to the zero-inflated exponential 

model only. It is possible that some other zero-inflated 

model (e.g. zero-inflated gamma / log-normal / Weibull) 

would provide better fit than our model for a set of weeks. 

The corresponding Bayesian inference can be carried out 

via Markov Chain Monte Carlo techniques (for more 

details, refer to Ghosh et al., 2006).  We reserve these as 

part of our future endeavour. 
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APPENDIX 

 
 Posterior distribution of parameters : For a particular week, rainfall   for   years can be considered as a sample 

                   (y|    ). The joint distribution of the observed variables             , is given by : 

 

                                  
               

            
         

 

   

  

 

 The prior density is given by : 

 

                          
         

          
              

  
  

     
           

 

 Thus, the posterior distribution of   is 

 

                                        

 

   

            

 

   

     

 

 The posterior distribution of   is 

 

                                        

 

   

       

 

   

     

 

 For estimates of the parameters   and  , we can consider the posterior mean or the posterior median. For a measure 

of dispersion, we can consider posterior variance or posterior standard deviation or some upper and lower quantiles, for 

example, 2.5% and 97.5% quantiles. 

 

 Posterior predictive distribution : For a future observation   , the posterior predictive distribution is given by : 

 

                                                                          



  

 

                     HAZRA et al.: A BAYESIAN ZERO-INFLATED EXPONENTIAL DISTRIBUTION MODEL                27 

  

 
 

 After integrating, we have   distributed as follows 

 

             
                 

                  
  

 

 where,   
           

      

       
. In comparison, we see that in case of frequentist approach, the maximum likelihood 

estimate turns out to be 
           

   

 
  [See Hazra et al. (2014)]. Now, the variable  follows the Lomax distribution (Pareto 

Type II distribution) with shape parameter            
       and scale parameter   

 
      . 

 

 

Software (R code) 

 

ZIE_Bayes<- function(Y, alpha_p = 1, beta_p = 1, alpha_lambda = 0.01, beta_lambda = 0.01){ 

Y <- Y[is.na(Y)!= 1] 

nopar_est<- as.vector(quantile(Y, seq(0.9, 0.1, -0.2))) 

  names(nopar_est) <- c("10% rainfall", "30% rainfall",  

                        "50% rainfall", "70% rainfall", "90% rainfall") 

mar.default<- c(5,4,4,2) + 0.1 

par(mar = mar.default + c(0, 1, 0, 0)) 

  p <- ppoints(100); q <- quantile(Y[Y > 0], p = p); 

  plot(qexp(p), q, main = "", xlab = "Theoretical Quantiles",  

ylab = "Sample Quantiles", cex.lab = 2, cex.axis = 2) 

qqline(q, distribution = qexp, lty = 2) 

# prior: p ~Beta(alpha_p, beta_p), lambda ~ Gamma(alpha_lambda, beta_lambda) 

zero_count<- sum(Y == 0); totals <- sum(Y); 

posmean_p<- (length(Y) - zero_count + alpha_p) / (length(Y) + alpha_p + beta_p) 

  names(posmean_p) <- "Bayesian estimate of p" 

p_credible<-  

qbeta(c(0.025, 0.975), length(Y) - zero_count+ alpha_p, zero_count + beta_p) 

  names(p_credible) <- "95% credible region of p" 

posmean_lambda<- (length(Y) - zero_count + alpha_lambda) / (totals + beta_lambda) 

  names(posmean_lambda) <- "Bayesian estimate of lambda" 

lambda_credible<- qgamma(c(0.025, 0.975),  

           length(Y) - zero_count + alpha_lambda, totals + beta_lambda) 

  names(lambda_credible) <- "95% credible region of lambda" 

install.packages(“VGAM”);library(“VGAM”); 

qziLomax<- function(q, p_hat, scale_par, shape_par){ 

if(q <= 1 - p_hat){ 

      out <- 0}else{out <- qlomax((p_hat + q - 1) / p_hat,  



 

 

28                             MAUSAM, 69, 1 (January 2018) 

 

 

 

                      scale = scale_par, shape3.q = shape_par)} 

    out} 

par_est<- sapply(seq(0.9, 0.1, -0.2),  

           function(qq){qziLomax(qq, posmean_p, totals + beta_lambda,  

                                 length(Y) - zero_count + alpha_lambda)}) 

  names(par_est) <- c("10% rainfall", "30% rainfall",  

                      "50% rainfall", "70% rainfall", "90% rainfall") 

  out <- list(nonparametric_estimate = nopar_est, 

Bayesian_estimate_p = posmean_p, credible_p = p_credible, 

Bayesian_estimate_lambda = posmean_lambda, 

credible_lambda = lambda_credible, 

model_based_estimate = par_est) 

  out} 

 


