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Spectral model with a regional focus
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ABSTRACT. A global spectral model with selective high resolution region is appropriate for the study of
a sharp local weather system if it is not very sensitive to the atmospheric state outside a limited active region.
If the linear dimension of the resolution required is / and the area of active region is A then one finds that an ade-
quate spectral model has the following features : (a) the model pole is moved away from the geographical north
and re-located in the vicinity of the weather system under study, (b) the set of new spherical harmonics yma  as basis
functions should have the parallelogrammic truncated range | m | <<n <N, 0 < | m | <M, where N~ 2= all,

M|N = +/af (1—f), f= Al(4n a*), where a is the radius of the earth,

Since the decomposition of a vector field, in a spherical coordinate system, into the radial and horizcatal parts
is rotationally invariant, the form of the equations of motion do not change under the re-location of the model
pole except for the Coriolis force t=rm. Mathematics of the modelling including truncation and management of

non-linear terms do not change.
1. Introduction

If there exists a limited active region surrounding a
local weather system such that the time evolution of
the local weather system is not very sensitive to the
atmospheric state outside the region then the weather
system will be called fundamentally local (f.1.). It is
conceivable that the non-linearity of atmosphericinter-
actions permits the existence of f.l. systems. Limited
area model (Krishnamurti 1969, Gadd 1984) would
have been appropriate to study an f.l. systembut for
the problems with the boundary conditions. On the
other hand the traditional global spectral models
(Roberts 1966, Orszag 1970, Orszag 1974, Kasahara 1977,
Machenhauer 1979, Jarraud and Simmons 1983,
De Maria and Schubert 1984) with triangular truncation
have isotropic resolution and hence to resolve the local
feature one has to go to a model withthe same high

resolution everywhere. This means a large and ex-
pensive model. The variable mesh global models
(Sharma ef al. 1987) are beset with problems of ani-
sotropy. Recently there has been an important advance
in terms of conformal transform proposed by Schmidt
(1977). It leads to a satisfactory spectral model with
variable resolution without anisotropy in the horizontal.
It has been applied using shallow water equations
(Courtier and Geleyn 1988). This line of approach
has to take up the challenge of strong convective systems
of low latitudes and show that the vertical vs. horizontal
anisotropy is inconsequential.

To attain regional high resolution one does not have
to modify the spatial grid. We suggest utilizing the
fact that for parallelogrammic truncation fthereis in-
creased resolution at high latitudes at theexpense of
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resolution in low latitudes (Machenhauer 1979). Ap-
propriate truncation parameter for any desired resolution
within a limited region around the north pole has been
indicated in the next section. It is suggested that the
model pole be relocated at the vicinity of I.1. system by
an appropriate rotation from the traditional pole at
the geographic north. The spherical harmonics asso-
ciated with the model pole are expressible interms of
the traditional spherical harmonics through standard
rotation matrices. An important propertly is that
the spherical harmonics associated with the model pole
provide a representation for the meteorological fields
which is more stable near the f.1. system.

The shifting of the pole is effected rigorously through
the appropriate representation of the rotation group.
It follows that inthe process no rotational property is
vitiated; there is no seepage of anisotropyinthe trans-
formation process. The vertical directionis invariant
under rotation and there does not develop, any new ani-
sotropy in any vertical plane. In contradistinction the
Schmidt transform (used by the ECMWF) uses a con-
formal transformation which does not have the nice
properties of the rotation group and is bound to intro-
duce new anisotropy in vertical planes.

The meridional low wave numbers that are in-
consequential in the selected polar region can be used
to improve the representation of the meteorological
fields in the exterior region. They should ensure, in
particular, that no prominent local system develops
at the model *south pole’.

2. Resolution and stability

Spectral model with triangular truncation is rota-
tionally invariant and has uniform resolution all over
the sphere. However, the stability of an expansion in
spherical harmonics with respect to small errors in the
determination of the expansion coefficients is maximal
at the poles where a maximum number of spherical
harmonics have common node.

For parallelogrammic truncation the resolution near
the poles is higher than near the equator (Machenhauer
1979). For the polar region above a latitude %, an
east-west resolution of the order of a length / requires a
range of m values 0<|m|<<M, where (27 a cos 7,)/ ~M.
For the same order of north-south resolution we require
a range of n values, n <L Nwhere (27 a)/l ~ N, The arca
of the polar region is 2 & (I - sin 5,) @* and that is a
fraction f= (1/2) (1 —sin go) of the global area. I
follows that in a polar region of the fractional area
f = (active area)/(4m a*) a resolution length / can
be maintained with the parallelogrammic truncation
N~ 2mall, M/|N = cos 9, = 2/ f(1~f). This model
has a much coarser east-west resolution length 1/cos ¢,
at the equator although the north-south resolution re-
mains unchanged. The number of spherical harmonics
involved in the model is (M + )2 - (N=M)(2M |- 1).

To utilize the regional high resolution inthe study
of a f.1. system the polc of the spherical coordinate
system has to be re-located in the vicinity of the f.1.
system. This rotation of the coordinate system does
not change the structure of the equations of motion

except for the Coriolis force. It also does not vitiate
any of the standard features contributing to the success
of spectral model like no aliasing and applicability
of the transform method for the management of the
non-linear terms. This is a known observation and has
been utilized by Schmidt (1977).

Stability of the spectral representation of the meteoro-
logical field in the vicinity of the pole is an important
advantage. Consider, for example, a meteorological
field F (r. A, ) expanded in terms of the spherical har-
monics

mnr "

F= Z('mn Ymn = (1)

nin

The maximal error ~ Finduced in F due to errors
.C,., in the coefficients is estimated to be :

I.‘ G \_‘ ( ..mn 1 y i | (2)
o |
m.an

which is small in the vicinity of the pole where all v,,,.
m # 0, have a common node.

It follows that the spectral representation of the
meteorological fields in the active areaof the f.1. system
is more stable against errors in the modified model
where the pole is located in the vicinity of the f.]. system
than in the traditional model where f.1.system is away
from the poles. In the latter case the local feature is
built up through a delicate balance in spherical harmonics
with large values. Slightest errors in the superposition
coefficients can spoil the balance and wash off the local
feature.

The meteorological fields are accurately represented,
up tothe resolution length /, within the active region.
This leaves the super-position coefficients C,,, undeter-
mined for n - m| - 27/(7 - 27,). These coeflicients can
be used to improve the representation of the field
outside the active region. To ensure a clean single
prominent f.1. system which is located around only the
‘north” pole it is very important thatthe spherical har-
monics with large (permitted) values of - m and 'm
do not superpcse constructively at the ‘south’ pole.
This can be achieved by imposing the following con-
ditions
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Py ()—=0 for each m  (3)

n=\m

which may be utilized to determine (',‘,,;,,, and €., for
each m. -

For the determination of the spectral coefficients by the
least square deviation fit to the initial data we have to
suitably smoothen the data outside the active region.
Whereas the data within the active region should carry
the full detail the data outside sheuld be given on a
sparse grid so that cach grid point represents an average
over an arca as large as the active arca.
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3, Validity of the modification

There are two important features contributing to the
success of spectral model, (a) consistency of the trunca-
tion of the inifinite serics decomposition of the meteoro-
logical fields with the equations of motion, and (b) the
transform method for handling the non-linear terms.
To understand the genesis of these features we first
note that the basic functions, which are the spherical
harmonics, have a very specific transformation under
rotations and that the equations of motion are composed
of terms such that each transforms under rotation by
an identical law. These two properties imply consis-
tency of truncation. To establish the transform method
one has to invoke, in addition, the property that for the
set of spherical harmonics with orders constrained
by an upper bound the integrals yielding their ortho-
normality relations can each be changed into sum over
a fixed set of points. Now we notice that none of these
properties are specific to the choice of axis or pole in
defining the latitudes and longitudes. Thus, the funda-
mental properties that ensure success of traditional
model also ensure the success of modified model with
a shifted pole.

4. Methodology

We have to first establish the connection between
the reference frame used in the traditional model and
the reference frame used in the modified model. Subse-
quently we obtain the relationship between the spherical
harmonics used in the traditional model and the spheri-
cal harmonics used in the modified model. Finally we
obtain the relation between the expansion coefficients
of the meteorological fields in the traditional model
and the corresponding quantities in the modified model.

Let («, B) be the latitude and longitude of the re-
presentative point of the region of interest. We define
the Cartesian Model Frame of Reference (M) to have
it's z-axis passing through the point (a, B). The
traditional frame of reference, which we call asthe
Geographic Frame G has its z-axis coinciding with the
axis of rotation of the earth. The Mode] Frame M
is obtained from the Geographic Frame G through a
sequence of rotations. For ready reference see, for
example, Goldstein (1953) or Edmonds (1957). A
rotation through B about the z-axis of the G-frame
followed by a rotation through (m/2 - ) about the
intermediate y-axis and finally a rotation through -8
about the z-axis results in the M-frame.

Let the three components of a vector V in the G-frame
be collectively denoted by a column of three numbers
V@ and in the M-frame by the column of the three
numbers VM. The two columns are then related
through the matrix representing rotation defined above.

VM = ‘RC(,,,_ﬁ, oy B) Ve (4)
RO(—puB) = R(PIR(F —)RD:
R.(P) =

—sinBcosfB 0

cos B sinf 0)
0o 0 1

R LA sinae 0 —cosa
Y12 B 0 1 0 )
cosa 0 sina

If the triad of the unit vectors in G are denoted by
¢(G); and in M arc denoted by e(M); then :

[RO(—B, a, B) ]y = e(M).. e(G);.

Consider an arbitrary point (g, A). The triad of
unit vectors of the Geographical Spherical Coordinate
System G, is denoted by e(G)A, e(G,)y. e(G,), which
are eastward, northward and vertical directions res-
pectively. This triad is obtained from the Cartesian
triad e(G); through the following rotation :

RP(g, ) = R.,(kz )R_p ( d f-f;a)R:(A),

{RE(p, N)}ij = 2(G)i- € (G); 5 (5)

and hence the components Ve of the vector V in the
geographical spherical coordinate system is given by

Ve = RP(3,N) V¢ (6)

Consider the model spherical coordinate system M.
Let (gar, Ay) with respect to M, denote the same
point as (g, A) does with respect to G, Let V™ be
the component of ¥ in M, It follows that :

VM — R(gA ; BV @)
where, R'(pA ; «f) = RI'(@_H,A.J;) RU(=B, a, ) RP(gp, M),
[R(A ; af)]i; = e(M ;. e(G);-

Notice that the vertical axis or the z-axisin G, and M,
are the same. Hence R’ represents a rotation about
the common z-axis. Lety be the angle of the rotation,

Ri(gA; af) = Re{y(e:ap)} )

This determines 4 in terms of (pA) and (af). The
analytic expression for A is lengthy but geometrical
determination is direct. It is the angle between the
geographical latitude and the present model latitude.
Notice that any rotation R¢ of the Cartesian coordi-
nate system induces a rotation about the vertical at
each point in space leaving the vertical itself invariant.
Thus, decomposing a vector equation into vertical
(radial) and horizontal is rotationally invariant. Hori-
zontal components of VA are expressed in terms of
only the horizontal components of V& and vertical
component of ¥ is identical with the vertical compo-
nent of V& .

Formal structure of the basic equations is not changed
except for the Coriolis force. Since the components

QU of earth’s angular velocity are £, (0, cos 4, sin @)
it follows that :
QM — R,(y) Q%
= Q,R? (. Ax) R (=B, f) [ O 9)
( 0
1
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2
0= -,
24 hr
ie., QM — Q fsin y cos A
COsy COS 2
sin o
= £ fcosasin (Ay—f8)
Cosa sin gy cos (Ay—pB) -
—COS a COSyy cos (A —B)

COs gy sina
L sin oM Sin a

(10)

The Coriolis force —2 [Q < V™ has now a some-

what lengthy expression. Decomposing 2 and V into
vertical and horizontal parts ;

—2(2xV) = —fkx Vg — 20K V-2 Vu (1D
where,
= . —- | —
V=kVy+Va @ = 7 Jk+ 24 (12)
% 4 - o "
f=20k=20 —Z> _r,,,f‘(vr B 3 —a)
3/, 2
m
Yol (AJ! ’ : - — ey ) (13)

one can make the usual approximation,
—2(2 X V)~—fk X Vy.
The form of the curvature terms do not change.

The connection between the normalized spherical
harmonics y,,., (A ) and y, .. (Ay, ) is given hy
the (2n--1) < (2n+ 1) dimensional standard represen-
tation D) (R) of the rotation group :

N '
.l‘nhu(AJl- f‘l.‘l) " / dnn' [D('):Rr ']m'm X' (’\n”')
2y

n,m’
—1
- T.rm'n, ( '\‘n“] [D. " ‘:Rr" : e’ 11 ( ;4]
<y :
m

where, g = sin o, pry — sin o

The spherical harmonics expansion of
field o (r, A, 1) in the two frames read as

-
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The coefficients are seen to be related as :
4
M E DY (Re) v
1 mm’ m'n

m’

(16)

where we notice that the equality involves a single value
for n, ie.. it does not mix up different n's,

It follows that the management of parallelogrammic
truncation in the model frame M, is identical to that in
the conventional frame G..

Let us now consider a vector field, for example, the
velocity field, Let C%" and Mo be

y 1: l'H . i lhe
spectral  expansion coefficients in the geographical

and modified spherical coordinate systems respectively :

l’l“h - (";l‘ ! -“H'!r()" "'t)'
4] : : a h

nm

ain

Ir‘ A o \ ('J!‘ " ynm "‘.U‘ J“'.Ff)
e« Ly

nm

In view of the Eqns.(7), and (8) and (14) it follows that

=N R )] 50 (R) (6 (17)
o m P % mimi Bm
Bmi’
where it should be noted that for « — 3 it reads :
(‘_‘.‘-Ie wo__ \ Dm) !Ru) (,l,’“ -.‘ “x)
3 m Ly mm Im

m’

Thus, the coeflicient cf the vertical component does not
mix with the coefficients of the horizontal components
under the transformation ftom G, to M. Further.
there is no mixing of different n's— which means no new
problems of truncaticn.

4. Conclusion

The fundamental advantages of the traditional spectral
model are not lost as the pole of the basis functions is
shifted from the geographical pole to the region of
interest.  One gains the advantage of a selective high
resolution look and a stable representation in the region
of interest through the parallelogrammic truncation.
The maximum values of # and ‘m' is determined by
th: needed resolution length and the area of active.
region. The degrees of [reedom in the model are closely
fitting to the regional needs.
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Avpendix
Spectral decomposition of product of fields can be expressed in terms of Clebsch Gordon coeflicients.
There may be advantage to such expressions because Clebsch  Gordon coefficients have been  extensively
studied and tabulated. Basic equations in this context relate (a) product of spherical harmonics as linear super-
position of spherical harmonics and (b) derivatives of spherical harmonics as linear superposition of spherical
harmonics.
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then product with the Coriolis parameter f which depends on =u. Ay leads to the expansion:
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