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सार – बायत जसैी कृषष ऩय ननबभय अर्भव्मवस्र्ा के लरए बायतीम ग्रीष्भकारीन भॉनसून से जडुी भहत्वऩरू्भ ऋतुननष्ठ 
वषाभ फहुत भहत्वऩरू्भ है। ऋतुननष्ठ वषाभ भें असंतुरन के कायर् सूखे मा फाढ़ के रूऩ भें तफाही हो सकती है। कृषष ऺेत्र के 
अरावा, षवलबन्न अन्म ऺेत्र बी व्माऩक रूऩ से भॉनसून की वषाभ से जडुे हैं औय इसका बायत की अर्भव्मवस्र्ा ऩय सीधा 
प्रबाव ऩड सकता है। भॉनसून की वषाभ के कायर् फडे ऺेत्रों के प्रबाषवत होने की वजह से बायतीम ग्रीष्भकारीन भॉनसून 
वषाभ के कुशर ऩवूाभनभुान की भांग रगाताय फढ़ यही है। 
 

मह सभीऺा रेख बायतीम ग्रीष्भकारीन भॉनसून वषाभ के ऩवूाभनभुान के लरए सांख्यमकीम औय गनतकीम ऩद्धनत की 
हार की घटनाओ ंऔय सपरता ऩय कें द्रित है। 20वीं शताब्दी के उत्तयाधभ भें सांख्यमकीम षवधधमों का व्माऩक रूऩ से उऩमोग 
ककमा गमा र्ा, जफ कम्प्मटेूशनर शख्तत की उऩरब्धता सीलभत र्ी। रेककन, कम्प्मटेूशनर प्रौद्मोधगककमों भें प्रगनत के 
सार् गनतकीम ऩद्धनतमां षवकलसत की गई औय उनका सभुधित सपरता के सार् उऩमोग ककमा गमा। इस सभीऺा ने 
बायत भौसभ षवऻान षवबाग (IMD) की प्रिारनात्भक ऩवूाभनभुान प्रर्ारी के रंफे इनतहास की एक झरक प्रदान की है, 
ख्जसभें हार के प्रमासों औय उन्नत वखै्ववक जरवामु भॉडर औय फहुसांख्यमकीम - दृख्ष्टकोर्ों का उऩमोग कयके                
बायतीम वऻैाननक सभुदाम की सपरता बी शालभर है। हार ही के वऻैाननक अध्ममनों भें एक हाइब्रिड – गनतकीम –  
सांख्यमकीम – भॉडर के ननभाभर् की बी ििाभ की गई है जहां गनतकीम रूऩ से डाउनस्केर उत्ऩादों के ऩरयर्ाभों को 
सांख्यमकीम रूऩ से षवलबन्न सांख्यमकीम षवधधमों का उऩमोग कयके ठीक ककमा जाता है, ख्जससे एक कुशर ऩवूाभनभुान 
प्रर्ारी के लरए एक दृढ़ ऩद्धनत फनाई जा सकती है। 

 

 

ABSTRACT. The importance seasonal rainfall associated with the Indian summer monsoon is very significant for 
an agricultural-dependent economy like India. An imbalance in the seasonal rainfall can create havocs in the form of 

droughts or flood. Other than agricultural sector, various other sectors are also widely associated with the monsoon 

rainfall and can have a direct impact on the economy of India. With large sectors at stake due to monsoon rainfall, the 

demand for a skillful prediction of Indian summer monsoon rainfall has been ever increasing. 

 
This review article focuses on the recent developments and success of the statistical and dynamical methods for the 

prediction of Indian summer monsoon rainfall. Statistical methods were widely used in the late 20th century, when the 

availability of computational power was limited. But, with advancements in computational technologies dynamical 
methods were developed and used with reasonable success. This review has provided a glimpse of the long history of 

India Meteorological Department (IMD) operational forecast system, including the recent efforts and the success by the 

Indian scientific community using advanced global climate models and multi-statistical approaches. Recent scientific 
studies have also been discussed for the creation of a hybrid-dynamical-statistical model where the results of dynamically 

downscaled products are statistically corrected using various statistical methods, thereby creating a robust method for a 

skillful prediction system. 
 

Key words – Indian summer monsoon, GCMs, Statistical techniques, Dynamical downscaling, Forecast. 
 

 

1.  Introduction 

 

 Monsoon systems around the world have been 

known to have a significant impact on the area associated 

with respective monsoon systems (Webster et al., 1998). 

Monsoon is the word derived from the Arabic word 

„Mausim‟ meaning seasonal reversal of wind associated 

with rainfall over a larger region. Apart from reversal of 

wind, monsoon systems have been characterized by rainy 

and dry seasons. Broad monsoon systems around the 

globe have been classified as the East Asian monsoon, 

South Asian monsoon, the Australian monsoon, North 
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African & South African monsoon, Mexican & Southwest 

U.S. monsoon and the South American monsoon. Modern 

definitions to the monsoon are not confined to the seasonal 

reversal of winds only, rather, the monsoon systems are 

treated as complex processes that have a significant 

impact on various sectors of the region associated. 

 

 Focusing on the South Asian monsoon, which is also 

well known as the Indian summer monsoon (ISM), is the 

most prominent monsoon systems across the globe. The 

significance comes with the net rainfall received during 

the summer monsoon period, which is about 80% of the 

annual rainfall over the months June through September 

(JJAS). With 1/3
rd

 of the agricultural land rain-fed, the 

agricultural activities have been strictly tied to the 

seasonality of the monsoon over the Indian mainland 

region. The agricultural sector employees about 49% of 

total employments directly or indirectly and adds up to 

14% of total GDP of India (Ministry of Finance, 2018). 

Besides agricultural sector, improvement of other sectors 

such as the hydro-power, water management, husbandry, 

farming, mining, textile industries are also associated with 

the net seasonal rainfall. Also, fluctuations in mean 

seasonal rainfall can cause havocs and natural calamities 

in the form of floods and droughts causing loss of life and 

property (Kumar et al., 2013). Droughts and floods also 

have an adverse impact on the economy, for example the 

2002 drought brought down the GDP of India by 1% 

(Gadgil et al., 2003); this infers that monsoon seasons 

having excessive or scantier monsoon rainfall has an 

adverse impact on the economy as well as social lives in 

the Indian sub-continent. With such large-scale 

dependencies and high socio-economic impact, the 

prediction of the Indian summer monsoon rainfall (ISMR) 

at a certain lead time has been a challenge for the 

scientific as well as the planning communities. 

 

 The Indian summer monsoon is not only dependent 

on some certain selected atmospheric variables. Various 

atmospheric conditions such as the high pressure over the 

Tibetan region, the Tropical Easterly Jet stream at         

200 hpa, the low-level jet stream near the Somalia coast at 

850 hpa, the prolonged presence of the monsoon trough 

from North West India to the head bay of Bengal, the 

Mascarene high play an important role in the effectiveness 

of the monsoon (Mohanty et al., 2012). Besides these 

large-scale features, complex terrain over the Indian land 

(such as the Himalayas, Western Ghats, Deccan plateau), 

small-scale convective systems arising because of land 

atmosphere feedback, monsoon depressions, rainfall 

variability in the form of active and break spells etc. tend 

to induce rainfall variability over space and time. Thus, 

the summer monsoon is a complex and highly 

heterogeneous system. The monsoon rainfall is not only a 

resultant of the seasonal reversal of winds rather various 

other factors such as land surface processes, ocean-

atmosphere feedback, aerosols in the atmosphere, ice over 

land and sea etc., leading to making a complex climatic 

system. Although compilation of all these complexities 

stated above sums up the difficulty in the operational and 

research communities, however the risk associated with 

monsoon rainfall aberrations can be minimized through a 

skillful and timely forecast.  

 

 The past few decades have witnessed immense 

efforts to meet the demand of the people as well as the 

planning communities for a skillful forecast of the ISM. 

Several methods have been proposed by different 

scientists across the world to understand the complexities 

involved with monsoon systems and use them in an 

efficient manner for preparing operational forecasts. 

Large-scale atmospheric teleconnection [for e.g., relating 

the monsoon with the Eurasian snow cover, El Nino 

Southern Oscillation (ENSO), Indian Ocean dipole (IOD) 

etc.] have led to the development of statistical methods 

such as regression models which showcased certain skill 

in predicting the mean features and rainfall during the 

monsoon seasons (Banerjee, 1978; Verma et al., 1985; 

Bhalme et al., 1987). In the late 90s, Numerical Weather 

Prediction (NWP) models were developed and used for 

seasonal prediction of the ISM. Subsequently, 

Atmospheric Global Climate Models (AGCMs) and 

Atmosphere Ocean Coupled Global Models (AOGCM) 

were used with comparative success rate (Saha et al., 

2006, 2014). Several model developmental activities by 

intense research helped in making the AOGCMs a robust 

platform for a skillful prediction of the mean seasonal 

rainfall, onset dates and active/break phases during the 

monsoon season (Chattopadhyay et al., 2016). The 

application of statistical methods such as bias-correction, 

multi-model ensemble (Mitra et al., 2011), weighted mean 

on the GCMs products (Mohanty et al., 2013) were able to 

improve the prediction skills that helped the end-users in 

getting a better forecast for implementing as per their 

respective needs. Further, researchers showed that 

downscaling (statistical and dynamical) approaches 

applied on GCMs predictions have the potential to uplift 

the forecast skill. In the recent years, the tenacity of 

hybrid statistical-dynamical models, the dynamical-

downscaling and then statistical corrections is seen in 

reducing the forecasts errors significantly. 

 

 This paper addresses the recent significant 

developments and future scope on the monthly and 

seasonal prediction of the Indian summer monsoon. 

 

2. A brief history of the operational forecast of ISM 

 

 Scientific studies on Indian monsoon during initial 

periods can be dated as back as to the year 1875 with the
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Fig. 1. Historical chronology of statistical prediction of ISM at IMD 

 

 

establishment of India Meteorological Department (IMD). 

The first forecast on the Indian monsoon was empirical 

made by Blanford (1884) using the snow cover of the 

Himalayan region and relating it to the Indian monsoon, 

he concluded that excessive snow cover led to a deficit 

monsoon season and less snow cover resulted in an 

excessive monsoon season. Later, statistical relations of 

the Indian monsoon with chosen predictors led to the 

development of a regression model by Walker (1910) who 

used correlation techniques to prepare linear regression 

equations. The southern oscillation in the mean Sea Level 

Pressure (SLP) which was proposed by Walker led to the 

discovery of the Walker circulation by Bjerknes (1969). 

Banerjee (1978) also found the linkage of ISM with the 

mean latitudinal location of the 500 hPa ridge along the 

750E longitude in the month of April. Joseph (1981) saw 

the relationship of the upper tropospheric wind at 200 hPa 

with ISM. Major studies linking the ISM with the cross 

equatorial flow near Somali coast were addressed, which 

led to the strengthening of the regression model by adding 

the important predictors for ISM. These important studies 

were used by IMD in preparing the forecast by using 

regression models involving 8, 10 predictors. By the year 

1988, IMD used linear regression models which involved 

16 predictors for the forecast of ISM. Further studies led 

to the development of power regression models which 

were operational by the year 2003. The chronology of the 

history of statistical forecast of the ISM (major 

breakthrough) shown in Fig. 1. 

 

 Extensive research on the relationship of the Indian 

monsoon with various predictors were carried out in the 

subsequent years and their application in formulating 

statistical models is being undertaken till date (Kar et al., 

2012; Singh et al., 2012a; Nair et al., 2013). Though 

forecast by NWP models using computers started in 

1950s, systematic research on the application of NWP 

began in the early 1970s at IMD as well as Indian Institute 

of Tropical Meteorology (IITM). Since 1992, medium 

range monsoon prediction model was used for operational 

purposes at National Center for Medium Range Weather 

Forecast (NCMRWF). The past few decades have 

witnessed immense efforts for making a skillful forecast 

(Webster et al., 1998; Gadgil and Gadgil, 2006). 

 

 Modern day forecast is mainly based on both 

dynamical and statistical methods. The dynamical models 

used in these organizations are highly sophisticated, fully 

coupled ocean-atmosphere general circulation models and 

the integrations are carried out for several months to 

generate the dynamical outputs which are ultimately used 

to prepare monthly and seasonal forecasts. The key to a 

robust and useful seasonal forecast thus lies in the 

following components: 

 

(i) A good observational network. 

 

(ii) A model (dynamical/statistical) that can use the 

observations to yield the forecast of atmospheric 

variables. 

 

(iii) Post-processing and Evaluation of the output 

generated by the models. 

 

(iv) Usability of the forecast by decision makers. 

 

(v) Dissemination of the forecast to the end-users. 

 

3. Performance of GCMs in predicting ISMR 

 

 A dynamical model can be considered as a set of 

mathematical equations which are based on the 
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fundamental primitive equations which govern the 

atmospheric motions. Fundamental parameters of the 

atmosphere are represented by a set of seven fundamental 

equations. Thus, a dynamical approach of prediction can 

be defined as a set of mathematical equations which 

represent the state of the atmosphere and these equations 

are supplemented with the parameterizations of 

turbulence, radiation, moist processes, heat exchange, soil, 

vegetation, surface waters, kinematic effects of terrain, 

convection and many other atmospheric processes. 

 

 The Geophysical Fluid Dynamics Laboratory 

(GFDL), European Centre for Medium-Range Weather 

Forecasts (ECMWF), National Centers for Environmental 

Prediction (NCEP), the Center for Ocean-Land 

Atmosphere Studies (COLA) have developed AOGCMs 

which are quite successful in representing the mean 

monsoon features in hindcast mode (Mohanty et al., 2013; 

2019). Though the mean features were comparatively well 

simulated, the variability in monsoon rainfall was poorly 

depicted by these GCMs (Gadgil and Sajani, 1998). The 

lacunas of the models were specifically found with the 

correlations of the observed local SST and precipitation 

anomalies were negative over the West-north Pacific 

(Wang et al., 2005) and the poor simulation of monsoon- 

Equatorial Indian Ocean Oscillation (EQUINOO) link 

(Gadgil et al., 2005). These lacunas led to the 

development of fully coupled Ocean-Atmosphere models 

so that the feedback and response of the Ocean, which is a 

quite important parameter in the monsoon process can be 

well represented in the model, thereby improving the skill 

of monsoon prediction. 

 

 The IMD used the Indian version of Climate 

Forecast System version 2 (CFSv2) (Saha et al., 2014) 

which is specifically optimized for forecasting of the 

atmospheric state for the Indian region. The IMD-CFSv2 

is a fully coupled ocean-atmosphere spectral model. Since 

the Indian monsoon is a complex coupled system, a fully 

coupled GCM can help to get a credible forecast 

(Chaudhari et al., 2013). The IMD-CFSv2 has been 

configured by numerous sensitive experiments aimed at 

skillful prediction of the ISM (Chaudhari et al., 2013; 

Saha et al., 2014). Major challenges with the GCMs were 

found to be the model‟s inability to realistically simulate 

the large-scale features driving the monsoon, namely the 

land and ocean heat contrast, seasonal fluctuation of inter-

tropical convergence zone (ITCZ) and tropospheric 

temperature gradient (TTG). Along with these, hosts of 

global climate mode, viz., ENSO, Indian Ocean Dipole 

(IOD), EQUINOO and extratropical SSTs, also have an 

effect on the potential predictability of ISMR. 

 

 Alongwith the proper representation of the 

atmospheric processes, computational capabilities were a 

major hindrance in the path of dynamical models. GCMs 

are integrated over the entire globe and with the minimum 

possible time step of computation. But the mathematical 

integrations require ample time. Due to the computational 

constraint, GCMs are run at coarse resolution. The local-

scale features such as deep convection, land surface fluxes 

are not quite well represented in the GCMs. With the 

introduction of Nano technology and parallel computing, 

there has been a significant transition in the grid spacing 

of the dynamical model. The IMD-CFSv2 model is run at 

comparatively higher spectral resolution of T382 (38 km 

near the equator) for the seasonal forecast of monsoon. 

The model is run with 44 ensembles and the ensemble 

mean is considered as the forecast for the corresponding 

season.  

 

 The comparison of the hindcast output of the IMD-

CFSv2 with high resolution rainfall data over Indian main 

land region (Rajeevan et al., 2007; Pai et al., 2014). The 

IMD-CFSv2 model has the potential skill in simulating 

the large-scale circulations. The SST over the Indian 

Ocean is also well captured by the IMD-CFSv2 model in 

seasonal as well as free runs. Though the rainfall amount 

was quite varying in the free run, other large-scale 

meteorological parameters are satisfactorily simulated and 

seasonality of the ISM well represented. However, there 

are certain patches over the Indian land mass where the 

meteorological parameters have a significant bias. For 

rainfall, the model underestimates the rainfall when 

simulated with different resolutions (Chattopadhyay et al., 

2016) [Figs. 2(a-e)]. The IMD-CFSv2 model has a dry 

bias over most of the Indian mainland region (Sahai et al., 

2013). The biases in SST, especially over the Tropical 

Pacific and Indian Ocean tend to create anomalies in wind 

circulation over the Tropical Oceans, thereby creating 

anomalous monsoon circulations (Sabeerali et al., 2014). 

Dry bias can be observed over the West Indian Ocean 

whereas there is a very large region of wet bias over the 

North East India as well as the Eastern Indian Ocean. 

Chaudhari et al. (2013) concluded that the IMD-CFSv2 

model simulated warm bias over the West Indian Ocean 

and cold bias over East Indian Ocean can be associated 

with the processes governing the Indian Ocean dynamics. 

These warm and cold SST biases co-occur with the wet 

and dry rainfall biases. The sustained SST biases might be 

the reason for the persistent biases in rainfall over Eastern 

India during the monsoon season. The SST biases also 

drive anomalous easterly winds which further drives cold 

biases over the Oceanic regions and dry bias over the land 

region. Despite all these limitations in preparing a skillful 

prediction, the IMD-CFSv2 model has evolved over time 

and the skill has increased with every modification done 

to the model by the sensitivity studies. Customization of 

the model has been carried out based on the cumulus 

convection schemes, land surface physics, ocean
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Figs. 2(a-e). (a) Mean JJAS rainfall (mm/day) as simulated by CFSv2. Panels (b-e) represent the mean 

rainfall bias (mm/day) in CFSv2 with respect to GPCP with February, March, April and May 
initial conditions respectively [Chattopadhyay et al. (2016)] 

 

 

atmosphere coupling, autoconversion rates, cloud water 

accretion and many other sensitivity studies. 

 

 The NCMRWF uses a coupled model for medium 

range forecast during monsoon season known as the 

NCMRWF Unified Model (NCUM) (Mitra et al., 2013) at 

convection permitting scales and concluded that the 

rainfall was simulated quite realistic in the 2-week 

simulations. The NCUM also had various lacunas in the 

simulation of MJO activities. Accurate medium range 

prediction during the monsoon period is essential since the 

variability associated with monsoon can create a massive 

impact. The NCUM has been upgraded in the subsequent 

years by reducing the grid spacing, applying NEMOvar, 

an ocean data assimilation technique to provide the best 

possible real-time observational data. 
 

 In the early 21
st 

century, many institutes across the 

world started disseminating operational forecast 

particularly on the ISM. The validation of the forecast by 

various models was necessary to figure out the best 

available model that captures the rainfall better than the 

other models. Numerous studies were conducted to verify 

the skill of the models in predicting the rainfall during 

ISM and they found that most of the GCMs could able to 

replicate the mean pattern of JJAS rainfall, however, the 

intensity is underestimated by the all (Acharya et al., 

2011, 2012, 2013a,b,c, 2014a,b; Singh et al., 2012a). It is 

also proven by several studies including the above that 

inter-annual variability in the GCMs are lesser than the 

observations. During this review, the climatology and 

standard deviation of six global models along with the 

observations have been plotted for 36 years period (1982-

2017) and shown in Figs. 3&4 respectively. It is clearly 

depicted from the figures that although the spatial pattern 

is well represented, most of the models are 

underestimating the intensity in the all-India scale. The 

model efficacy is quite less for the high-rainfall area such
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Fig. 3. Climatological mean of mean simulated rainfall (mm) during ISM by CFSv2, COLA, GFDL with 3 

different ocean models, ECMWF and as observed by the IMD dataset 

 

 

Fig. 4. Mean intra-annual variability of mean simulated rainfall (mm) during ISM by CFSv2, COLA, 

GFDL with 3 different ocean models, ECMWF and as observed by the IMD dataset 

 

 

Figs. 5(a&b). (a) Root Mean Squared Error (mm) of CFSv2, COLA, GFDL and ECMWF model in predicting the JJAS mean seasonal 

rainfall and (b) Same as of (a) but represents the correlation coefficients with respect to the IMD observed rainfall dataset 

 

 

as the Western Ghat and North East India. The standard 

deviation of the June-September (JJAS) rainfall is poorly 

represented by all the models and the root mean square 

error (RMSE) is notably high [Fig. 5(a)]. Interestingly, the
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Fig. 6. Time series of JJAS rainfall (mm/day) from observation, raw model and six bias correction 

methods from 1982 to 2008 [Acharya et al. (2013a)] 

 

 

models have some skill when temporal correlation is 

computed, however the skill varies region-to-region           

[Fig. 5(b)]. Although the GCMs show encouraging 

prediction skill during June-September, a considerable 

bias is evident mainly over the Indian region and the same 

has been documented over the Indian land mass by Singh 

et al. (2013). Fig. 6 represents the bias corrected GCM 

products and compared with the observations along with 

the „No bias Corrected (NBC)‟. It is clearly indicating that 

all the bias correction method could able to adjust the 

model mean and standard deviation close to observations, 

however, the performance of the bias correction varies 

method-to-method. 

 

 The investigation on the bias corrected GCMs to 

understand the usefulness of the methods and use several 

standard skill metrics are presented in Table 1. They have 

found that the Standardized-reconstruction technique (Z) 

and Quantile Mapping Method (Q) are more skilful than 

the others and both are equally skilful in simulating ISMR 

and recommended that the simple standardized-

reconstruction technique is good enough for bias 

correction for ISMR. The newer generation models are 

achieving the correlation between observation and 

prediction of seasonal mean precipitation over India to 

better than 0.30 (Rajeevan et al., 2010). However, the skill 

of prediction of the south Asian monsoon rainfall by all 

models currently remains significantly below the potential 

limit of predictability. Several reasons are likely to 

contribute to this problem. 

 

 El Nino-Southern Oscillation has a major influence 

on the Asian monsoon and the errors in the model may 

contribute to the poor skill of monsoon prediction. Finally, 

almost all models have serious systematic biases in 

simulating the observed climate over the Asian monsoon 

region (Sabeerali et al., 2014). These systematic biases are 

likely to contribute to the poor skill of monsoon forecasts.  

 

 GCMs, despite their limitations have been quite 

successful in the mean seasonal forecast of the Indian 

summer monsoon; a major limitation arises from the 

coarser resolution at which GCMs are integrated. Due to 

this, the local-scale features such as land surface 

complexities, local scale convective activities are not well 

represented in the model. Therefore, direct application of 

GCMs output has been often inadequate because of their 

limited representation of mesoscale atmospheric 

processes, topography and land sea distribution in GCMs. 

Also, some regions which can be of particular interest 

forrainfall variability can be completely missed in the 

GCMs. One of the most prominent methods for improving 

the skill can be by the method of downscaling. 

Downscaling can be defined as a process where 

information at a larger scale is used to reduce the scale 

and make predictions at local-scale. Any information that 

is presented at spatial scales finer than 50 km × 50 km and 

temporal scales finer than monthly values has undergone a 

process called downscaling. While it produces climatic 

information at scales finer than the initial projections, this 

process involves additional information, data and 

assumptions, leading to further uncertainties and 

limitations of the results, a consequence that is often not 

made explicit to end-users. Since the research community 

is still developing downscaling methods, users often need 

to read highly technical and specialized explanations in
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TABLE 1 

 

Skill scores for not bias corrected model (NBC) and all bias correction techniques : mean bias-remove technique (U), multiplicative                            

shift technique (M), standardized reconstruction technique (Z), regression technique (R), quantile mapping method (Q) and                                           

principal component regression (PCR) along with observation (Obs) [Acharya et al. (2013a)] 

 

Statistic Obs Raw U M Z R Q PCR 

Mean (mm/day) 7.63 5.68 7.63 7.63 7.63 7.63 7.61 7.61 

SD (mm/day) 0.75 0.25 0.25 0.34 0.78 0.34 0.76 0.72 

RMSE (mm/day) - 2.06 0.69 0.44 0.83 0.72 0.80 0.83 

Index of agreement (d) - 0.37 0.45 0.58 0.65 0.48 0.66 0.60 

 

 

order to understand and adequately apply the results for 

impact studies, planning or decision-making. 

 

4. Research and developments on downscaling 

approaches for prediction of ISM 

 

 The concept of downscaling arose from the fact that 

the regional climate is largely conditioned by the large-

scale climate. The process in which the information is 

cascaded down from larger to smaller scales is known as 

downscaling. In climate studies downscaling can be 

largely helpful by the detailing of specifics such as the 

atmospheric or oceanic circulation, topography, land-sea 

distribution and land-use. Two types of downscaling 

which are primarily and widely used are the statistical and 

dynamical downscaling. 

 

 4.1. Statistical downscaling 

 

 Despite continuous efforts for more than a century, 

the predictability of ISMR is always questionable as there 

is always some uncertainty associated with it. Plethora of 

studies is in favor that the phenomena is very chaotic in 

nature and is attributable to the internal process in  

addition to the slowly varying boundary conditions. 

Statistical downscaling follows the principle of 

establishing a statistical/empirical relationship between 

large-scale atmospheric variables (predictors) such as 

precipitation, specific humidity, temperature, geopotential 

height, etc., with station (local) scale meteorological 

variables (predictands) such as temperature and 

precipitation. 

 

 Prasad et al. (2010) developed logistic regression to 

predict rainfall on monthly timescale in three study 

regions namely, India as a whole and two homogeneous 

regions of India by using DEMETER retrospective 

forecasts for the period of 1959-2001. With the 

availability of large number of GCMs several multi-

model/statistical approaches were introduced and applied 

for prediction of precipitation (Sahai et al., 2000, Kar       

et al., 2012; Kulkarni et al., 2012; Acharya et al., 2013c; 

Nair et al., 2013; Singh et al., 2012b; Sinha et al., 2013a). 

Kar et al. (2012) used multi-model ensemble (MME) 

technique based on super-ensemble approach for 

prediction of July rainfall. In a similar context, monthly 

rainfall prediction was attempted by Nair et al. (2013) 

using supervised principal component regression and it 

was reported that the model is able to capture observed 

rainfall in the month of June, August and September. 

Some studies documented an improvement in the skill of 

seasonal rainfall prediction but a deprivation in skill is 

noticed while attempting monthly-scale prediction (Singh 

et al., 2012b; Mohanty et al., 2013; Nair et al., 2013). 

 

 The strategy involving statistical method of 

prediction involves regression techniques. The regression 

coefficients are determined by using a long-term analysis 

of observational and GCMs outputs. Other than regression 

techniques modern day innovative statistical and 

dynamical methods such as neuro-computing approach 

using SST anomaly as a predictor (Acharya et al., 2012), 

supervised Principal Component Regression (Nair et al., 

2013), Artificial Neural Network technique (Nair et al., 

2018), multi-model Canonical Correlation Analysis 

(Singh et al., 2013; Sinha et al., 2013a), Weighted multi-

model ensemble (Acharya et al., 2014a) etc., were 

developed and each method was found to have an 

significant impact while using the statistical techniques for 

predicting rainfall. Development of these methods led to 

the development of a framework under the Extended 

Range Forecast System (ERFS) which used the techniques 

efficiently to prepare experimental forecast at met-

subdivisional level (Acharya et al., 2013a,c,b; Mohanty   

et al., 2013, 2019; Singh et al., 2012b, 2014; Sinha et al., 

2013a). Sinha et al. (2013a) have identified potential 

predictor fields (such as zonal and meridional wind at    

850 hPa and 200 hPa, specific humidity at 850 hPa) for 

three different domains (d1, d2 and d3) and used those 

predictor fields in the CCA method for downscaling of 

JJAS precipitation in India. They have applied the CCA 

methods on the NCMRWF global model outputs. Their 

study concluded that statistical downscaling approach is 

reasonably well for prediction of precipitation over
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TABLE 2  

 

Observational and reanalysis data used in the study (SD = Statistical downscaling products using CCA) [Sinha et al., 2013a] 

 

Area 
2006 2007 2008 2009 

NCMRWF SD NCMRWF SD NCMRWF SD NCMRWF SD 

INDIA 0.55 0.7 0.59 0.8 0.49 0.66 0.55 0.85 

NWI 0.37 0.42 0.68 0.79 0.66 0.79 0.78 0.88 

WCI 0.66 0.76 0.67 0.87 0.49 0.8 0.58 0.89 

SPI 0.74 0.89 0.73 0.85 0.8 0.8 0.72 0.95 

CNEI 0.49 0.07 0.44 0.36 0.04 0.12 0.31 0.52 

NEI 0.03 0.31 0.03 0.76 −0.09 0.25 −0.01 0.52 

 

 
different homogeneous regions in India. They have also 

shown that the method has significantly improve the 

prediction skill over the host GCM of NCMRWF               

(Table 2). However, the skill of this method is not uniform 

over space. In another study by Sahai et al. (2003), they 

reported that SST can be a good predictor for the 

prediction of the ISMR.  

 

 4.2. Dynamical downscaling 

 

 Dynamical downscaling techniques, involve the 

extraction of regional scale information from large-scale 

GCM data based by the modeling of regional climate 

dynamical processes using a Regional Climate Model 

(RCM). An improvement in the forecast by GCMs can be 

achieved by the dynamical downscaling of the GCM 

outputs using a RCM (Giorgi et al., 2012). RCMs are 

simulated for a particular region of interest at a higher 

resolution using the initial and boundary conditions 

derived from the GCMs. The dynamical downscaling is 

based on the scientific reason that the lower bound are 

forcing by the oceans in the form of SST, sea-ice cover 

and by land surface moisture, temperature, albedo, 

vegetation cover evolve on a slower time scale as 

compared to the weather systems. These parameters can 

give rise to significant predictability which might be 

missing in the GCMs. 

 

 The RCMs are of increasing interest owing to not 

only to its satisfactory skill in seasonal scale simulations 

but also capable of representing the small-scale processes 

better than its host GCMs (Sinha et al., 2013b). Finer 

representations of the land surface can have a significant 

impact on the radiative forcing. Secondly, by the use of 

non-hydrostatic formulations, the RCM can be the 

prospect of permitting instead of parameterizing the 

convection. At convection permitting resolutions, the 

structural evolution of convective systems can be well 

captured as well as cold air intrusion in the mountainous 

regions and the land-sea breeze can be simulated better. 

However, they also possess certain limitations in the form 

of accuracy and intervals of Initial and Boundary 

Conditions (ICBC), choice of physical parameterizations 

(Sinha et al., 2019) and land surface physics (Singh et al., 

2007; Mauryaet al., 2017). Some of the key atmospheric 

features are parameterized in the GCMs due to lack of 

physics as well as computational capabilities. Whereas 

these processes can be represented in the RCMs. Thus, 

there is a need to optimize RCM for dynamical 

downscaling of the GCMs for improvement in the forecast 

skill of the Indian summer monsoon. 

 

 The regional climate model RegCM has been widely 

used by the research community to improve the skill of 

GCM outputs by the method of dynamical downscaling. 

Several studies have been conducted to customize the 

model by various sensitivity studies (Sinha et al., 2013b, 

2014, 2019; Maurya et al., 2017, 2018; Mohanty et al., 

2019). Customizing the model based on orography, 

cumulus parameterization, land surface model, horizontal 

resolution, domain size, moisture flux adjustment, auto 

conversion coefficients etc. have led to improvement in 

the skill of the RCM in simulating the Indian summer 

monsoon rainfall. Sinha et al. (2014) have shown that the 

RegCM is quite sensitive to the Himalayan orography. 

Minor changes in the height of the Himalayan orography 

led to significant changes in the mean summer monsoon 

seasonal rainfall. Similarly, Maurya et al. (2017) 

concluded that the Community Land Model (CLM4.5) 

performed better over the previous version of CLM (3.5) 

and the BATS land surface scheme. A significant finding 

was established in the paper by Maurya et al. (2018) 

where the RegCM was found to be quite sensitive to the 

domain size and optimum model resolution for simulation 

of ISM. The RegCM was found to improve the skill of 

rainfall forecast up to a certain grid spacing. Decreasing 

the grid spacing to very high resolutions led to further 

deterioration of model skill. A regional climate model,
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Figs. 7(a&b). Comprehensive Rating Matrices (CRM) in (a) over homogeneous regions of India                 

(CRM HRs) and India as a whole (CRM AI) and Skill Score (SS) of RegCM4-R with 

different autoconversion experiments computed for the Indian domain. Standardized 
rainfall anomaly index as observed (IMD) and as simulated by the control (CTL) and 

M750 simulations for the JJAS, 2000-2016 in (b) [Mohanty et al. (2019)] 

 

 

Fig. 8. Correlation coefficients of three composite excess (1983, 1988 and 1994) and deficit monsoon 

seasons (1982, 1986 and 1987) with default (BATS), addition of CLM4.5, CLM4.5 with 
customized Cumulus scheme, with domain customized, with resolution customized and with 

autoconversion coefficient customized respectively 

 

 

when used for downscaling should only be used a certain 

resolution to get the best outcome of the downscaled 

product. The comprehensive rating matrices and the skill 

scores supports the fact that a regional climate model can 
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perform well/poor based on the domain of choice and the 

resolution used for downscaling. 

 

 Significant discrepancies were observed when the 

model was simulated with different cumulus 

parameterization schemes (Sinha et al., 2013b, 2019). 

Different cumulus schemes yielded varying rainfall 

amount and pattern over core regions of the monsoon over 

Indian main land region. Microphysical schemes were 

also found to have a major impact on the net simulated 

seasonal rainfall which was studied by Mohanty et al. 

(2019). Minor changes to the autoconversion coefficient, 

which is responsible for the conversion of cloud water to 

rainfall, led to major improvement in the rainfall skill by 

RegCM [Figs. 7(a&b)]. The above studies have inferred 

that the customization of a RCM by sensitivity studies to 

various physical parameters for a specific region of 

interest is quite important. The mean seasonal rainfall 

pattern and intensities were found to have significant 

discrepancies with different cumulus schemes and 

different auto-conversion rates. 

 

 The impact of the approximations can be 

summarized by the finding that a RCM needs to be 

customized before using it for a particular region of 

interest. Fig. 8 represents the gradual correlation 

coefficients of three composite excess and three composite 

deficit years with the customization of the RCM based on 

the different physics and coefficients of approximation. 

The correlation coefficients can be clearly seen to be 

improving over the default model configuration. With the 

addition of CLM and choosing a better performing 

cumulus scheme, the model is found to be improving. 

Similarly the choice of the domain and finding a suitable 

resolution adds to the improving skill of the model. With 

the addition of the customized auto conversion coefficient 

the model possess some potential skill to be used a RCM 

for dynamical downscaling of Indian summer monsoon 

rainfall. 

 

5. Multi-statistical approach on GCM for single 

forecast 

 

 It is well established that present day advanced 

General Circulation Models (GCMs) have the ability to 

simulate the seasonal climate with higher skill. 

Continuous efforts are being made for the robust 

combination of the output of the GCMs in order to 

develop seasonal forecast systems based on multiple  

GCM outputs all over the globe. Min et al. (2014) 

evaluated the performance of APCC prediction using 

multi-model ensemble products for seasonal climate                 

over the globe for all seasons on real-time mode                  

(2008-2013) and they found a reduction in forecast             

errors of seasonal climate prediction that resulted                          

in an improved forecast skill. Goddard et al. (2003)                

also evaluated the multi-model ensemble forecast of 

seasonal climate over the globe by IRI from 1997 to 2001 

and they found a larger area of positive skill in                     

the net assessment forecasts compared to any single 

prediction model. 

 

 The need for seasonal scale precipitation prediction 

at met-subdivision level threw an urgent requirement for 

developing methodologies for providing advance weather 

and climate information in extended range (monthly to 

seasonal scale) which motivated the scientists of the 

meteorological and agricultural fields to undertake a 

determined research effort, via a multi-institutional 

approach, for development and application of extended 

range forecast of rainfall for climate risk management in 

agriculture that led to the multi-institutional research 

project “Development and Application of Extended Range 

Forecast System for Climate Risk Management in 

Agriculture (ERFS)” sponsored by Department of 

Agriculture Cooperation & Farmers Welfare, Ministry of 

Agriculture & Farmers Welfare, Government of India. In 

the ERFS, a number of scientists at various stages from 

different national and international institutions have 

significantly contributed to improve the prediction skill of 

ISM by using existing methodologies or developing new 

methods. The results obtained in the ERFS have been 

extensively evaluated. 

 

 The ERFS forecast is based on the statistical 

downscaling of a number of dynamical models obtained 

from various national and international organizations. 

Mohanty et al. (2013, 2019) have applied three statistical 

downscaling approaches, namely, a multivariate 

regression technique based on singular value 

decomposition (SVDMR) method, supervised principal 

component regression (SPCR) and canonical correlation 

analysis (CCA) on the bias corrected GCMs for the ISM 

rainfall prediction at meteorological subdivision level. 

They developed a monthly and seasonal scale forecast 

system ERFS (they kept the name same as the project 

abbreviation) to integrate the outputs from three 

downscaling approaches (SVDMR, SPCR and CCA) for 

generating a single prediction system of summer monsoon 

rainfall and assessed the skill of the ERFS forecasts. 

Mohanty et al. (2013, 2019) showed an improvement in 

the prediction skill of summer monsoon rainfall using 

ERFS. 

 

 Although, Mohanty et al. (2013, 2019) have shown 

that the robustness of the single consensus forecast using 

multi-statistical techniques applied on the bias corrected 

GCM outputs and its useful application in the agricultural 

model, in this review work, the authors have further 

evaluated  the  real-time ERFS summer monsoon products 
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TABLE 3 

 

A brief details of the GCMs 

 

S. 

No. 
Model Resolution 

Ensemble 

members 
Type 

1. CCCM3v6 (T42) 2.7° × 2.8° 24 2-Tier 

2. ECHAM4p5 CA SST (T42) 2.7° × 2.8° 24 2-Tier 

3. ECHAM4p5 CFS SST (T42) 2.7° × 2.8° 24 
Semi-

Coupled 

4. CFSv2 (NCEP) (T26) 0.9° × 0.9° 24 
Fully 

Coupled 

5. 
COLA-RSMAS-

CCSM3 
T106 6 

Anomaly 
Coupled 

6. GFDL T42 10 
Fully 

Coupled 

7. 
GFDL-CM2p5-FLOR-

A06(GFDLA06) 
T42 12 

Fully 

Coupled 

8. 
GFDL-CM2p5-FLOR-

B01(GFDLB01) 
T42 12 

Fully 
Coupled 

9. ECMWF 0.75° × 0.75° 15 
Fully 

Coupled 

10. IMD-SFM T42 10 2-Tier 

 

 
by considering additional three forecast years (2015-2017) 

along with the six forecast years (2009-2014) considered 

in Mohanty et al. (2019). The success of the ERFS 

products in real-time has motivated to carry out an 

extensive evaluation to examine the quality and reliability 

of the ERFS products at various meteorological 

subdivisions for nine forecasted years. 

 

 A total ten GCMs products are used in the present 

study and a glimpse of each model is presented in Table 3. 

Among the ten GCMs, seven are made available from IRI, 

USA. The remaining three GCMs namely, NCEP Climate 

Forecast System version 2 (CFSv2), European Centre for 

Medium-Range Weather Forecasts (ECMWF) and 

atmospheric GCM Seasonal Forecast Model by India 

Meteorological Department (IMD-SFM) are made 

available from the corresponding organization/source of 

the GCMs products. Lead 1 prediction (one month in 

advance) of above-stated GCMs is extracted for each 

season from 1982 to 2017 and further the mean of all 

ensemble members corresponding to each GCM is 

considered for statistical bias corrections. The developed 

forecast products are verified against the observational 

reference at 1° × 1°gridded data set generated by IMD 

(Rajeevan et al., 2006).  
 

 The methodology of the ERFS has been nicely 

described in Mohanty et al. (2013, 2019), still, a brief                

on  the methodology is presented here as a quick reference  

TABLE 4 

 

The climatology and standard deviation of GCMs, MME BC and 

ERFS along with IMD observation for all seasonal precipitation 

(mm/day) for hindcast period of 1982-2008 

 

GCMs 
JJAS Rainfall 

Climatology (mm/day) Standard Deviation (mm/day) 

Obs 7.47 0.65 

CCM3v6 6.36 0.3 

CASST 7.48 0.3 

CFSSST 7.36 0.52 

CFSv2 5.36 0.39 

COLA 6.58 0.25 

GFDL 7.32 0.53 

GFDLA06 6.03 0.53 

GFDLB01 5.86 0.47 

SFM 3 0.63 

ECMWF 6.15 0.29 

MME_Raw 6.25 0.27 

MME_BC 7.46 0.48 

ERFS 7.49 0.56 

 
 

for the readers. A two-stage procedure of post-processing 

is carried out on the GCMs predicted precipitation.              

First, the GCM output is re-gridded at observational grid  

(1° × 1°) points by using the bilinear interpolation 

technique. Secondly, the systematic bias is removed              

from the GCM predicted precipitation using the 

standardized reconstruction technique which is found               

to exhibit significant skill over the Indian domain 

(Acharya et al., 2013a, 2014a). In the training data sets of 

27 years (1982-2008), leave-one-out cross validation 

method is used to understand the efficiency of the bias 

correction method. In the leave-one-out method, 

forecasted year is not considered in the training dataset 

and the remaining 26 years data are used to calculate 

model and observed climatological mean and standard 

deviation (Acharya et al., 2011). The same procedure was 

implemented for real-time forecasts (2009-2017). To 

enhance the quality of seasonal prediction, after removing 

the systematic bias of all individual GCMs for the 

ensemble mean forecasts, statistical approaches such as 

the Singular Value Decomposition based multivariate 

regression (SVDMR) (Kar et al., 2012; Acharya et al., 

2013a,c; Mohanty et al., 2013, 2019), Supervised 

principal component regression (SPCR) (Nair et al., 2014; 

Mohanty et al., 2013, 2019), Canonical correlation 

analysis (CCA) (Singh et al., 2012b; Sinha et al., 2013b) 

have been used. The outputs from the above three
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Figs. 9(a-c). (a) Correlation coefficient (b) Root mean square error (RMSE) and (c) Phase Coherency of GCMs, 

MME, MME BC and ERFS for JJAS seasonal rainfall in hindcast period 1982-2008 against IMD 
observation. The dashed lines on the Fig. 15(a) indicate significant positive correlations 

 

 

techniques are further combined based on their hindcast 

skill in order to obtain the final consensus ERFS product 

(Mohanty et al., 2013, 2019).  

 
 The all-India JJAS mean seasonal rainfall and its 

inter-annual variation for the individual GCMs, MME 

Raw (simple mean of GCM products), MME BC 

(weighted mean of bias corrected GCMs) and ERFS are 

shown in Table 4; it is clearly demonstrated that ERFS 

could able to adjust the mean and variability close to 

observations. Figs. 9(a-c) illustrates that the skills of 

atmospheric GCMs are not satisfactory in simulating the 

JJAS seasonal precipitation. It is noticed that three 

coupled GCMs are significantly (at 90% confidence level) 

correlated with fairly high values and the highest 

correlation is found in CFSv2 followed by the GFDL and 

GFDLB01. The skill of multi-model ensemble mean of 

these raw GCMs (MME Raw) and bias corrected GCMs 

(MME BC) have also been examined since this is now a 

common standard practice in seasonal scale forecasting. It 

is interesting to note that the MME Raw shows an 

insignificant skill. In the case of MME BC there is not 

much improvement in terms of correlation; while in 

RMSE, there is a slight depreciation indicating MME BC 

is better than MME Raw. Since, one individual GCM and 

the mean of ensemble members of that particular GCM, 

are not able to properly simulate the seasonal patterns, the 

multi-model ensemble mean through robust statistical 

technique is adopted in the ERFS. Figs. 9(a-c) clearly 

indicates that the ERFS show higher correlation and lesser 

RMSE value in JJAS than the individual GCMs, MME 

Raw and MME BC. It can be noticed that the skill of the 

ERFS is higher in representing the seasonal mean 

precipitation with the maximum skill in JJAS. The 

analysis on phase coherency (Sinha et al., 2015) indicates 

that ERFS has a satisfactory skill compared to the 

individual GCMs, MME Rawand MME BC (Mohanty                

et al., 2019). 
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Figs. 10(a-e). Confidence map of real-time ERFS forecast (a) June, (b) July, (c) August, (d) September 

and (e) JJAS precipitation at each subdivision for the period 2009-2017 

 

 
 5.1. Spatial skill of real-time ERFS with confidence 

maps 

 

 The confidence maps as a percentage of success of 

the ERFS real-time forecasts of 9 years (2009-2017) are 

generated at a meteorological subdivision level to focus 

upon the spatial variation.  

 

 The confidence maps are evaluated as a number of 

forecast years that are same with the observed category to 

a number of years in consideration, multiplied by 100 [for 

all the seasons and presented in Figs. 10(a-e)]. From              

Figs. 10(a-e), it can be observed that the success of hits is 

highly significant in all the June and July months and the 

appreciation part is that the ERFS real-time forecast has 

high confidence during the peak monsoon month July. 

The confidence during August and September, more than 

70% of the met-subdivisions have confidence more than 

60%, which is encouraging. Further, the confidence for 

June and July is higher than the latter two months with 

more number of sub-divisions. During the southwest 

monsoon season (JJAS), the success rate ranges from 60% 

to 100% [Fig. 10(e)]. The hits in the Monsoon Core Zone 

(MCZ) are also higher and are greater than 60% in the 

met-subdivisions comprising the MCZ. The maximum 

precipitation zones viz., Northeast and the Western Ghats 

are having a confidence of more than 70%. Interestingly, 

the confidence of the ERFS is notably high for JJAS scale 

[Fig. 10(e)]. The ERFS forecast has satisfactory 

confidence over the Indo-Gangetic plain and surrounding 

area of the monsoon trough, particularly near the Bay of 

Bengal. 

 

 5.2. Application of ERFS real-time forecast in 

agriculture 

 

 The beauty in the ERFS project is that they not only 

enhance the confidence in the forecast skill at met-

subdivision scale, but they have also used the ERFS real-

time forecast in the agriculture model to estimate the 

usability of the forecast. 

 

 The ERFS basically generates the monthly and 

seasonal forecasts, but it is needed to disaggregate into 

daily sequences as a requirement of CERES-rice crop 

model. The stochastic disaggregation of forecasts at 

seasonal and monthly scales to daily values by                

weather generator is based on statistical properties of 

climate series by manipulating input parameters to 

reproduce mean and variance. A number of studies are 

available to link the seasonal and monthly climate 

forecasts to crop simulation models for prediction of                    

crop yield. Using this stochastic disaggregation, monthly 

data can be converted into daily values. But, it is                 

always necessary to test the reliability of stochastic 

process. Reliable disaggregation process will build the 

confidence in disaggregating the total rainfall into 

frequency and intensity. 
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Fig. 11. Simulated grain yields using observed weather and disaggregated seasonal rainfall forecast (mean 

of simulated yields using 200 realizations) for June-September, July-September, July-August and 
September from 1983 to 2007 (Ghosh et al., 2015) 

 

 
 Ghosh et al. (2015) tested the performance of 

stochastic disaggregation based on Markov chain model 

by disaggregating the observed monthly weather data into 

daily sequences and correlated with observed daily series. 

Rice is a major crop, grown under rainfed condition in 

most parts of the state of Orissa and West Bengal in India 

during summer monsoon months and thus exposed to 

uncertainties of monsoon rainfall in respect of onset of 

monsoon, long dry spell causing soil moisture stress or 

drought and extremely heavy rainfall leading to flood etc. 

In view of that, attempts have been made to evaluate 

performance of predicted kharif rice yields over West 

Bengal and Odisha from crop simulation models using 

ERFS seasonal and sub-seasonal rainfall forecast products 

with different initial conditions during summer monsoon, 

with the objective of providing advance information to the 

farming community and the decision makers to prepare 

for upcoming crop growing season. Crop productivity 

may be predicted, through linking climate forecasts to a 

crop yield model, at the beginning of the season or even 

long before the season starts. The ERFS forecast first 

disaggregated in daily sequence and then used in the crop 

model DSSAT for Kharif yield prediction at 

Bhubaneswar, Odisha. After rigorous evaluation, they 

have found that for all the time steps, more or less, mean 

and inter-annual variability of the observed rice yield have 

been predicted reasonably well. Further, some of the 

statistical skill measures such as MBE, correlation and 

index of agreement were evaluated to quantify the 

predictability of the crop yield. An improvement in these 

skills is noticed with the advancement of the season. The 

correlation (index of agreement) was found to be                   

0.45 (0.63) for June-September, 0.61 (0.73) for                      

July-September, 0.73 (0.79) for August-September                  

and 0.79 (0.79) for September. The skill improves as the 

season advances and inter-annual variation is well 

captured at all time steps (Fig. 11). In a similar context, 

Dhekale et al. (2018) have also investigated the 

applicability of ERFS forecast for Kharif yield prediction 

over Kharagpur, West Bengal. They have also reported 

that the simulated rice yield corresponding to the 

realizations from the stochastic disaggregation are in good 

agreement in capturing the magnitude as well as year-to-

year variations in the baseline yield. 

 

 Therefore, the ERFS forecast has significantly 

contributed in improving the monthly and seasonal scale 

forecast during the summer monsoon. More importantly, 

the ERFS has made a jump from all-India scale to met-

subdivision scale with satisfactory prediction skill and 

higher confidence. The application of ERFS in agriculture 

for crop yield prediction is reasonably well which will be 

helpful to the agro-met advisory. 

 

6. Future challenges 

 

 The GCMs are the most important tools for advance 

intimation of the atmospheric conditions. However, it is 

already seen in a large number of research articles that the 

usefulness of GCM raw products is insignificant or may 

be worse for direct application in different sectors like 

hydrology, agriculture etc. In one hand, it is seen that 

application of multi-statistical techniques on multiple 

GCMs output can provide a robust and improve prediction 

of rainfall. On the other hand, dynamical downscaling of 

GCMs using regional climate model (RCM) can 

reproduce fine structure atmospheric state with higher 

accuracy. Therefore, dynamical downscaled products from 
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RCM can be further used in the statistical downscaling 

approaches (Hybrid Dynamical-Statistical approach; 

HDS) to improve prediction. Moreover, the advancement 

in the HDS system may provide district level forecast 

which will be adequate to use in the different sectors. 
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