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Rossby wave and pure rotational wave
G. C. ASNANI

Indian Institute of Tropical Meteorology, Poona

ABSTRACT. In this note the proof'of the relation that exists at the equator between speed of a pure rotational
wave and wave lengths of streamlines and trajectory (Asnani 1972) has been provided. Also the proc f of the idea of Con-
stant Absolute Spin (C.A.8.) trajectory as distinct from Constant Absolute Vorticity (C.A.V.) trajectory developed is

presented.

1. Introduetion du

In a short note entitled ‘Rossby wave and dt Ryvpafo ()
Pure rotational wave’ Asnani (1972) presented dv
the result without giving the proof that at the 6 —.ﬂy(U’ =2 iﬁ?]z) = —fu (5)
equator, the speed C' of a pure rotational wave is B i ¢
given by Ar =2V, Jg sin (xy/2) (6)

I il @ Ly=8y/2e |2 (s %5 )~

where L,and Lp are the wave lengths of the stream- - B 2 2
line and the trajectory respectively. In the same lF( gin T T )] M)
note, the author also developed the idea of Constant 2 979
Absolute Spin (C.A.8.) trajectory as di tinet 4
from Constant Absolute Vorticity (C.A.V.) trajec- = ,— ( sin :io 3) (8)
tory. In the present paper a proof for these '\/Vuﬁ 22

statements is provided. ) . :
Ay is the amplitude of the trajectory, d.e.,

2. Pure rotational wave the maximum distance from the equator to which
the particle projected at the equator travels north-
wards; Lp is the wave-length of the trajectory
in z-direction. F' and E are the elliptic integrals
of the first and second kind respectively defined

Let us consider pure inertial motion of a par-
ticle on a frictionless horizontal surface of the
rotating carth in a pg-plane approximation.

Specifications of the initial condition are : by
U, vy = Zonal and meridional components
of velocity at the equator at (=0 E(k, 6) = J' 0 V(12 sin%) 4 (9
@y = Angle which the particle makes with the o
equator at the time of crossing into F(k. 6) J'G d6 10)
the northemn hemisphere. (%, 0) = o V(I—I2 sin® ) (
Vo = VU v I’ is the period in which the particle completes
For simplicity, we shall consider cartesian system one oscillation at the equator.

of co-ordinates rotating with the earth. z is
o ) . sas i 3.2, In respect of the curvature of the path of
positive towards east, y is positive towards north; the particle, the following relationships are in-

JI=py teresting,
2.1, It is then easy to derive the following re-

lationships (Whipple 1917; Rosshy 1940; Wiin- dy _ v (i)
Nielsen 1970) : T =
ST 4Py (2) W K7 S 7 12
o= Ui = Fa—th 3 (2) = & a2
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%y ByVe
dz? u’u (13)
1L dyds® By (14)
R = [1-Hdy/da) PP 7,
14

The curvature of the particle i3 proportional
to its displacement from the equator. The path
of the particle is the famous elastica, the shape of
a thin elastic rod strained by forces applied at the
two ends. As seen from Eq. (15), along the tra-
jectory of the particle, the value of the absolute
spin (coriolis term - eurvature part of the spin)
around the vertical is constant; the particle con-
serves its absolute spin. Hence its trajectory
can be called C.A.S. (Constant Absolute Spin)
trajectory. A pwticle prejected horizontally at
the equator traces a C.A.8. trajectory.

3. Trajectory with a small angle

So far, we have not placed any restrictions on
the relative magnitudes of U and v, and hence
on oy, We now restrict oy, to be a small angle.
In other words U>>y, Now the trajectory be-
comes a sinusoidial curve, for which mathematical
analysis becomes much simpler. It can be shown
that under these eirecumstances, we have

V, - U
AT = ﬂn 731 .:..ao “E_ (16)
Ly= 2nm Vﬁz' = 2 \/g_ (17)
2m « 2m
ViV - VUB 0%
1 472
By~ LA YT %% yr=-—- gyr (19)
w'r= Ut (20a)
2m
Sz Aruil - 2 (20b)
A
Vg = 2m UL:T (21)
e (2:1
=ty 0 xr_r) (22)
d (V i
G+ 1 )=o (23)

4, Set of particles
We now visualise a set of suitably synchronised
particles projected from the equator, all with the

Fig. 1. Trajectory and streamlines

same velocity of projection V, and making the
same small angle o, with the equator, hut
crossing the cquator with a time lag, one behind
the other. These trajectories will give rise to a
streamline pattern in the form of a wave with
the following characteristics (Rosshy 1940, Hal:
tiner and Martin 1957, p. 186).

A, U—-C
=7 (o)
L u—¢
L= @)

p =—Uy + %;J—’ sin 2% (x-—Ct) (26a)

The central streamline ¢=0 being given by

. 27
o= %’- # sin — (a:-*G't) (26b)

vy L,
dy=7 o (27)

In Fig. 1, the trajectory and the streamline are
shown schematically.

APBD is the trajectory and AP’ B’ D’ is the
streamline. During one complete period, a par
ticle moves along the trajectory from A to D
vig P, B, C. During the same period, the stream-
line wave moves through the distance I’ to D
(distance=Lp—L,). Corresponding to the posi-
tion P of the moving particle on its trajectory,
there is a point P’ on the moving streamline such
that P and P’ are always on the same ordinate
and further the direction of movement of P ig
the same as the direction of the streamline at | 4
i.e., slopes of the trajectory and streamline are
identical at ‘corresponding’ points. It can also
be shown that the speedsat ‘corresponding’ points
are identical but curvatures are different. Hence
the spin of the particle Vp/Ry is different from
the vorticity Vyp/R, of the streamline,
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5. Speed of the pure rotational wave
From Egs. (17) and (18), we get
I' = 47%BLy
From (20a), the period I' is
I' = Ly/U
From (28) and (29), we get
U = BLp?/4n*
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Combining with Eq. (25), we get
U—C = BLLy/4n* (31)

(28) It will be seen that this wave formula is different
from Rossby wave formula given below,

5 U—C= %ﬁ (32)

Eqs. (31) and (32) become identical only for a
(30) stationary wave (C=0; L,=Lyp).
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