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Generation of very high supergeostrophic winds using
a new form of oscillating eddy viscosity profile in
a barotropic planetary boundary layer*
V. V. SHIRVAIKAR
Bhabha Atomic Research Centre, Bombay

ABSTRACT. Observed diurnal variation of wind in the planetary boundary layer is characterised by two features,
viz., the ‘elliptical’ pattern described by the horizontal wind vector and occurrence of supergeostrophic winds. In
summer, these may exceed 1-7G where (7 is the geostrophic wind. Theoretical work has produced qualitatively the
elliptical patterns of wind vector, but the supergeostrophic winds have been limited to 1-35¢. In this paper, an ex-
pression based on the eddy conductivity data from Cedar Hill Texas in a 434 m layer is analysed to obtain a new ex-
pression for the eddy viscosity K (z, f). Departure from convention is made in that, Fourier analysis is made on log K
instead of on K, giving an expression of type, K (3,0)= K, (z) exp [a(z) cos w[t—e ()] ] to give all positive values
of K. Numerical solution of equation of motion (for horizontal wind) in a barotropie planetary boundary layer are
obtained using the above form of K(z,'#). Next, analytic solution of the momentum equation is obtained for the sim-

lest form of the above expression for K (2, 8), viz., K=K, exp (a cos wt) where Kyand @ are constants. It is shown that
if we use high values of @ as shown by observed oscillations of K at Manor Texas, supergeostropic winds as high as
1756 @ can be obtaincd. Finally, using the same analytic solution method, dependence of the wind oscillations on

various parameters is discussed.

1. Introductory review ) )
Diurnal variations of wind observed in the

planetary boundary layer show the wind vector
describing an  approximately elliptical pattern
(Wagner 1939; Blackadar 1957; Buajitti and
Blackadar 1957). The size of the ‘ellipse’ is largest
at a few hundred metres. The orientation of the
semi-major axis of ellipses observed by Buajitti
and Blackadar (loc. cit,) at Oklahoma City was
mainly in the direction of the mean wind. Howevar,
the hodographs of wind given by Wagner (loc. eit.)
for Houston, Texas do not show this feature.

Another observed feature of the diurnal wind
variation is the occurrence of predawn wind maxi-
ma in the vertical profiles, of magnitude exceed-
ing the geostrophic value G. At the Great Plains
in USA where the density of observational data
is large, the predawn supergeostrophic wind
maxima, often called low level jets, attain values
as high as 1.7 G. Some of the examples cited by
Blackadar (1957) show wind maxima of about
1.56 G in autumn at 39° latitude (Maryland,
USA) and 1.3 G in winter at 30° in Texas, USA.
A most striking example is that of the mean jet
at Fort Lamy in Africa equal to about three times
the geostrophic wind in winter.

The equation of motion in a barotropic pla-
netary boundary layer is—

2 cu
fl’ = &J{K(Z;() _35_}
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where the x-axis is oriented in the geostrophie
wind direction and the terms have their usual
meaning. When & is constant, it is seen that
the solutions and hence the supergeostrophic
wind will depend only on the form of the eddy
viscosity K (z, t).

d
f(G—u) + =

Several forms of K (z, t) have been used by
earlier workers to study the nature of diurnal
variations. The forms were generally separable
in beight and time, viz., K(z. t) = ¢(z) &(t). Bua-
jitti and Blackadar (1957) and Paegle (1970)
used the simpl.st form of i(t) = 1} « cos wi with
#(z) = const., when analytic solutions were sought.
Here g is the amplitude < 1 and o refers to 24-hr
period. Haltiner (1959) used one more harmo-
nic but had to resort to numerical techniques.
He modelled g(2) after the Leipzig profile (Lettau
1950) and also gave another expression for K
hased on the work of McBride (1960) and Haltiner
(1960, 1961).

Mention must also be made of Estoque’s (1963)
non-analytical specification of K (2, t) where K,
is given by surface layer relations upto a height
of 50 m which he takes to be the height of the cons-
tant stress surface layer. From here onwards
upto an assumed boundary layer of 2050 m K
falls linearly to zero.
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All the solutions showed qualitative agreement
with observed variations in that they are elli-
ptical but have failed to give supergeostrophic
wind maxima greater than 1.35 @, i.e., less than
the observed.

Holton (1964) has taken into account diurnal
variation due to thermal winds caused by a slop-
ing terrain. Though the amplitudes of wind
oscillation given by Holton for 30° latitude are
comparable to the observed variations at 37°,
drastio reduction in the amplitude has heen found
by Paegle (loc. cit.) when caleulation was made for
37° iteelf.

One of the main difficulties in obtaining an
adequate form of K (z, f) is that any theoretical
formulation becomes well nigh impossible in
absence of constraints, e.g., that of constancy
of shear stress, with height as is used in the first
foew tens of metres of the surface layer. Thus
the use of observational data for formulating
forms of K (z, t) becomes imperative.

Though data on diurnal variation of eddy
viscosity are scarce, published data are avail-
able on eddy conductivity which often may be used
interchangeably with eddy viscosity, within a
layer of 434 m which forms a significant part of
the planetary boundary layer. These are from
the 434 m Cedar Hill Tower at Texas in spring
and winter and have been published by Wong
and Brundidge (1966). It is possible to use these
data to obtain an empirical analytic expression for
K (2, t) valid within 434 mand also beyond, al-
beit by extrapolation based on indirect evidence
of the behaviour of certain mean properties of
K (2, t).

The purpose of this paper is to obtain an em-
pirical expression for K (2, t) as outlined earlier
and use it to investigate whether it is capable of
generating the observed magnitudes of the super-
geostrophic winds. Later, a method of obtaining
the solution of Eq. (1) for K (z, t)=K 4 k(t) where
h(t) is any oscillating function will also be given.

2. Fourier representation of Cedar Hill data

The Cedar Hill data is in the form of half hourly
points which are averages of six determinations
in winter and five in summer respectively, at four
heights : 9, 134, 284 and 434 m (levels designated
Nos.1,6,12 and 18). Some points are missing
and the negative value of K observed during the
analysis have been omitted. The diurnal varia-
tion of K is over about one order of magnitude,

The procedure followed here to obtain expres-
sions for K (z, t) was to fit empirical relations to

the TFourier coefficients and phases obtained
from the Fourier analysis of the Cedar Hill data,
subjest to certain boundary criteria. For the
sake of simplicity and reducing computational
efforts, it is desirable to truncate the series to
first harmonic. One of the drawbacks in such
truncation when the dependent variable has large
amplitude (as for K) is that the truncated series
often gives negative values of K in the region of
Kpin. To avoid this, the Fourier analysis was
done on log K instead of K.

With the Fourier analysis on log K, we may
write

K (zt) = K, (z) exp [R, (2) co8 w [t —¢ (2)
+Ry(2) cos 2w [t — € (2)] + -...] (2)

where R; and ¢; are the amplitudes and phases
respectively of

log {K (z, t)} and K, (z2)=exp{R, (2)}
The first harmonic truncation will give
K (z,t) = K, (2) exp {a (2) cos w[t—e (2)]} (3)

Table 1 gives the amplitudes R, obtained from
Fourier analysis on log K performed after smooth-
ing the data. The table also shows the corres-
ponding phases in hours (CST). For compari-
son, the corresponding parameters for Fourier
analysis on K are also shown in the corresponding
tables.

As far as the convergences of series is concerned,
there was found no preference between the li-
near and exponential representation. However,
the advantages regarding the first harmonic trunca-
tion are clear when we refer to the values of
R,and R, at level 6 (134m) in the linear representa-
tion for Cedar Hill. Since Ry<R,, such a trunca-
tion will give negative values of K during part
of the cyele, whereas the exponential form can
never give negative K.

Tt must be noled that the amplitudes for the
two :apresentations are not the same, As can
be seen from the following equivalence :

oot = I (a) + 2 I, (a) cos w!
+2I,(@)ecs2wt+ .. .. (1)

where [, are modified Bessel functions of the
first kind, Thus we see that the exponential
representation automatically includes part of
the higher harmonics. Tor a = 1,3-4 harmonics
are significant.
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Fig.1. Variation of a () with height for spring and winter

at Cedar Hill, Texas. The solid curves show the fitted

expressions. Also are shown by solid triangles, the

variation of a(z) with height in summer at Manor

Texas, from the data of Jehn & Gerhardt. These aré

much higher than for spring and winter, and upper
scale should be used
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Fig. 2. Variation of K(z) with height in spring and winter

at Cedar Hill. The solid curves show the fitted expression
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Fourier componenis for log K and K from Cedar Hill

Log K K(em?/sec)
I A — f A l
Level Ry Ry € R, R, €
(hr CST) (hr CST)
SPRING
1 10+ 98 0304 14-50 491105 8+03 105 17-32
6 1150 0. 754 17+ 05 1469 < 105 1-12x 108 15+12
12 10-99 1-66 16250 1:48 ¢ 10 165 % 108 15-88
18 10+ 58 0-99 16-04 9033 104 Te82x 104 12.82
WINTER
1 10-03 0+ 669 11-49 3:40 100 2.01 x 104 1266
6 10+ 80 1- 142 1426 1483105 1:85x 105 1503
12 1111 1-696 1355 1-81 % 105 1-93 % 105 1370
18 11-07 0-949 12.72 103 % 10% 7-23 X 104 12:01




SUPERGEOSTROPHIC WINDS IN PLANETARY BOUNDARY LAYER 337

8. Expresslon for X (2, t) at Cedar Hill

In Figs. 1, 2 and 3 are plotted the values of
a(2), K, (z) and ¢ (z) respectively for the ex-
ponential representation, All these parameters
first increase with height and then decrease mono-
tonically.

Consider first the amplitude function a(z)
in Fig. 1. Several functions were tried for
a(z). Of these the Lorentz type function

P
1+@Q(z—2,)°

a(z) =

()

where P, () and gz, are constants, gave the best
fit, with following values,

Spring :
P = 1.66, Q =42 km—‘-", Zm = 0.3 km

Winter
P=1.75,Q = 30 km~2, z,, — 0.27 km

The functions are shown by solid ocurves in
Fig. 2. Next, let us consider the function K, (2).

From Eq. (3) and (4) we note that the mean
daily profile of eddy viscosity is given by

K (2). = K, (2). I {a (2)} (6)

Now, within the surface boundary layer of few
tens of metres, the quantity @ (z) as seen from
Fig. 2 does not change appreciably. For example
in winter, a (z) changes from 0.6 to 0.8 within the
first 100 m. The corresponding values of I, are
1.092 and 1.166 respectively. Therefore, the
term I, {a (z)} may be considered to be a cons-
tant &~ 1. The expression for K, () therefore
should satisfy the usually accepted lower boun-
dary condition such that

(¥) K, (z) = 0 at the surface

(1) K, (z) increases linearly near the surface,

Similarly, at the upper boundary since
@ (2) > Oand I () » 1, and

(13} K, (2) should tend to zero with inercas-

ing height after passing through a
maximum (¢f. Leipzig profile),

A suitable function for K (z) satisfying all the
three conditions, is

Kﬂ (2) = Kﬂ . (P2 — eTi?) (7)

In Fig. 2, Eq. (7) is fitted to the points in spring
with the following values of the parameters.

Spring :

Ko = 1.54 x 105 cm’/sec,

Pi=32km, P,=40km?

With these parameters, K, (2) increases upto
60 mand then decreases.

Winter 1 :
In winter, the least square fit of Eq. (7) gave
Ky, = 6.1 x 10* cm?/see,
Py,=0,P,=51.8lam™2

This implies that K () remains constant beyond
a fow tens of metres above ground. However,
the general behaviour of K (2) in spring and that
of Leipzig profile (in summer) suggest that
a decrease of K (z) with height may not be un-
realistic.  If, therefore, we assume a slow
decrease of K (z) with height as given by the two
uppermost  points for winter following para-
meters may be obtained.

Wanter (I1)
Ky =T x 10% em?/sec,
P;=10.25km, P, = 45 km—?

These are not significantly different from
Winter (I) parameters and shall be adopted here.

Lastly, we shall consider the phase term e, (2),
The phase also first increases with height and
then decreases linearly, This can be expressed as

«(e) = ¢ — 2/fy — By ~lFs ®)
where €, B;, B, and B, are constants.

From Fig. 3 following values of the constants
are determined.

Spring :
€ = 21 hr (CST), g, = 0.085 km/hr,
B, = T hr, B, =0.086 km,

Winter :

€ = 15.2 hr (CST), B; = 0°18 km/hr,
Bo =5 hr, ﬁz = 0.0215 km,

It must be noted that the accuracy of B, and 8,
is comparatively poor due to lack of points, In
gome applications, the lowermost levels are
not important and the exponential terms may
be omitted.

The final expression for K (z, t) is obtained by
substituting expressions (5), (7) and (8) in Eq.
(3)-

Perhaps the greatest drawback of this ex-
pression is that it is based only on a set of four
points and the formulation is entirely empirical




338 V.

4.0 b

SPRING

2 Clem)

V. SHIRVAIKAR

0 01 0.2 03

04 05 4

Fig. 4. Development of wind profiles for Cedar Hill K (z, ) on second day of integration. The times indicated are CST

and therefore without a sound physical basis.
However, the nature of variations with height
arc at least qualitatively in conformity with the
Leipzig and Estoque profiles (¢f. Fig. 8 later).

In the following, this profile will be used to
calculate the variation of wind profiles with
time and the magnitude of the maximum super-
geostrophic excess.

4. Supergeostrophie winds, with Cedar Hill X (z, )

Fig. 4 shows the calculated scalar wind pro-
files in spring obtained by wusing Cedar Hill
K (2, t) in Eq. (1). These were obtained from the
numerical solutions of the Eq. (1) using  the
fourth order Runge Kutta method given by Gill
(1952). The finite difference scheme used was
the same as the linear scheme given by Haltiner
(1959) but with A z2=0.05kmand At =0.01 hr
with the following boundary conditions.

Uy =1,=0, Uy=6G=1 v3=0

where the zero suffix refers to the ground level
and the geostrophic wind condition is clamped
at 81st level (4 km). The latitude was 30°. The
initial conditions were set as the Ekman distri-
bution with eddy viscosity = K. The compu-
tations were done on a CDC 3600 computer.

The maximum supergeostrophic  wind ob-
tained is 1.42 @ at 0.6 km which is higher than
the values obtained earlier. In winter this,
calenlated in a similar fashion, was 1.3 G at
0300 CST and occurred at 0.5 km. The winter
magnitude agrees with the average (16 profiles
in January) jet of 1.3 @ at 0300 CST reported
by Blackadar (1957) at San Antonio, Texas
(29°45") though the jet level was higher (0.9
km,)
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High winds observed frequently in summer
often exceeding 1.7 G at Great Plains are not
generated by the Cedar Hill K (z, t). In this
connection it is relevant to mention a criterion
stated by Paegle (loc. cit.) : “the theories of wind
variation should predict the night-time predawn
occurrence of speed mazima over the Great Plains.
They should also be able to account for the 70%
supergeostrophic excess which are sometimes ob-
served”.

Cedar Hill K(z, ¢) while generating the predawn
jet does not account for the supergeostrophic
excess of magnitude observed, though the values
are higher than those deduced by earlier workers.

5. Low level jets in summer

The diurnal variation and the supergeostro-
phic excess are larger in summer for which Cedar
Hill data were not available. However, if we refer
to the data on Ky published by Jehn and Ger-
hardt (1950) for one day in summer at Manor
Texas, for four levels between b and 35 m, some
idea may be obtained as regards the magnitude
of diurnal variation of K. The data were analysed
in the same way as for Cedar Hill. The values
of @ (z) thus obtained are plotted in Fig. 2. The
remarkable feature of these is the magnitude.
Whereas the maximum a(z) for Cedar Hill in
spring and winter were 1.6 and 1.8 respectively
with an average of about 1.1 (diurnal variation
by a factor of 9), the mean @ (z) for 35 m level
itself is 2.35. When the corresponding levels
are considered, the exponential amplitude a (z)
is about three times larger than the corres-
ponding amplitudes in spring and winter, Des-
pite this solitary observational reference, it seems
to be safo to conclude that the diurnal oscillation
of K is generally much higher in summer than
in other seasons,

Inabsence of a complete specification of K (z, )
in summer, we shall use the simple form of
Eq. (3), vz,

K=K, et coswt (9)

where K, and @ are constants. Based on Paegle’s
study as well as the independent investigations
by the author it may be stipulated that the re-
sults obtained by using Eq. (9) will not be signi-
ficantly different whethoer K, is height dependent
or not. In the following we shall make a study
of diurnal variation of wind for different values
of exponential amplitudes a. We shall give
below a method of obtaining exact analytical
solutions, albeit in integral form, of Eq. (1).
In fact, the method is useful for any form of K
that can be expressed as

K = K, i(t) (10)

where £ (f) is any oscillatory funetion. The method
will, therefore, also be used to obtain solutions
of (1) with a linear cosine form of K = K, (14
o c0s wt) to investigate why the earlier forms
of K (z, t) do not give the observed high super-
geostrophic winds.
6. Analytical solutjions of momentum equation
Writing

V=u-+1iv

W=V—-Gel' +-G (11)

Eq.

—— = K.h(t)

1) transforms to
2W

az?

To eliminate & () define a modified time variable
t
’ T =] h(t)dt (13)
0
which reduces (12) te the standard form of para-
bolic equation,
aW 2*W
= — 1
aT K a? (14)
The boundary conditions which were

(()z2=0 ,u=v=0
(1) z=> o0, u—>G, v>0 (15)

change to

(2z=0 ,W0,T)=@G[1—¢T)

(1) 2 >0, WG (16)

(assumed invariant with time).
Tn Eq. (16), ¢ (T) as can be seen from Eq. (11) by
putting V=0 is numerically equal to ¢if* where T
and t are uniquely related to each other through
Eq.(13), for the type of functions one would
normally encounter for A(f). For the form
h{t) = 1 - & 008 wt it is possible to find the in-

verse funetion £ = ¢ (T') but it will not be the
case in general,

An initial condition i1s now required. This may
be imposed as Ekman spiral profile at t=T1=0.

Explicitly, this is

W(z,O):G.[l—exp{—u(l—-i] (Efrf{)iz } ]
(17)

where K need not he equal to K,
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From Carlsaw and Jaeger (1959) solution of Eq.
(14) with boundary conditions given by Eq. (16)
and initial condition given by Eq. (17) can be
written as sum of two solutions

W= W,+ W, (18)

where W satisfies Eq. (14) with W; = 0 initially
and=W (0.T) at 2=0 and W, satisfies Eq.(14}
with Wy = W (2,0) initially and W, =0 at Z = 0

We then have

W,=

° [ ( ﬁ)
2238 1 —¢|T——— |ewrd 19
-\/71 .f [ o # 4‘K01‘ # (19)

224/ K,T
I’Vz -
o fz=—2')? (z427)?
o y TAK, T AR i ;

where,

F(z) = W (20)/6&
Resubstituting

V=W, + W, —Ge i+ @ (21)

w and v can then be obtained hy separating real
and imaginary parts of Eq. (21)for any given set
of (z, t).

The main problem in evaluating the integrals
is to obtajn the value of ¢ corresponding to a
given value of 7. In Eq. (19) the term ¢ (7) where

=1 — 24K u?

is simply eif* where ¢ corresponds to r through Eq.
(12). Thus, a graph of Tt using Eq. (17) is capable
of giving ¢ if a graphical method is followed. Here,
the evaluation was done using CDC 3600 com-
puter.

7. Discussion of results

In Fig. 6, the solutions from Hq. (21)are presen-
ted in the form of hodographs at 0.3 km, 30°
latitude and Ky=105 cm?/scc. These are for the
linear cosine form of K [h (1) =1 + a« cos wl]
on the second day of integration. The points are
at three hourly intervals. The value of « for each
hodograph is also indicated. The hodographs are
clliptical, conforming qualitatively to the observa-
tions. Initially, the amplitude of wind variations
increases with the amplitude o of K - variations.
However, an interesting foature is that as e ap-
proaches unity the wind oscillations reach an
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upper limitas seen from the virtual congruence
of the ellipses (Fig. 5d) for o = 0,99 (K mox/Kmin
= 199) and o = 1 (maximum possible amplitude),

The hodogarphs with & (f) = 3 cos wt for values
of @ corresponding to those in Fig. 5 such that
K ox/EKmin is same for hoth, are shown in Fig. 6,
the other parameters being same. For small
values of a, the corresponding ellipses are of the
same sizé but the winds for the linear cosine case
are a little higher,

7.1 Supergeostrophic winds

The hodograph in Fig. 6d with ¢ =2.65 corr-
esponds to ¢ = 0.99. The remarkable feature of
this hodograph is that the supergeostrophic wind
at 0.3 km (not necessarily the jet level, is a little
more than 1.5 ¢ which is larger than, any values
so far theoretically deduced. Thus the exponential
cosine form (3) used here is capable of satisfying
the Paegle’s criterion cited earlier if suitable values
of a are used to conform to the high summer ampli-
tudes of K. In faet, for a=3.3 (ahout three times
the mean spring amplitude) the supergeostrophic
wind was 1.75 Gs. which is of the same order ag
the summer magnitudes of supergeostrophic winds
at Great Plains.

7.2 Profiles

The profile of computed scalar wind approxi-
mately at the time of maximum jet (curves marked
A)and at the time of maximum K (curves marked
B) are shown in Fig. 7 for various forms of K
(2, t) and latitudes. The time of maximum jet
oceurs after the time of oesurrence of minimum
K, the delay depending upon the inertial peried
i.e., upon the latitude. As can be seen from Figs.
5 and 6, the delay is of about 2 hr at 30°. It
is shorter, about one hour, for 60°. The A pro-
files which are profiles 3 hr after the occurrence
of Kuin at 30° and at the time of Ky, at 60°
are not significantly different from the maximum
jet profiles. For the Cedar Hill profiles (¢f. Fig. 4)
the maximum jet oceurs at 6 am CST in spring,
Its corresponding value in winter was 3 am CST.
In the case of analytical solutions, ¢ = 0 refers
to the time of occurrence of K ,.. The mean value
of this time as can be seen from Fig. 3 is about
1500-1600 hr C8T. The time of the jet which at
30° is 38 hr after K.y refors therefore to about
5 aM to 6.am, which ressonably agrees with the
observed time of occurrence of about 3 am for
predawn maxima, considering the simplified haro-
tropic atmosphere assumed here.

The first two profiles (Fig. 7) are for the Cedar
Hill spring and winter forms of K (z,¢), and 30°

latitude. The profiles marked 3 and 4 are for the
exponential cosine form (9) with K ;=105 cm?/sec,
for 30° and with ¢ = 1.1 and 2.303 respectively.
The former value of @ is approxima.tely same ag
the average a (z) observed at Cedar Hill for spring
and winter, and gives 18 fold diurnal change in K.
The latter value of @ is in conformity with the
magnitude of @ observed at Manor, Texas in
summer and gives 100 fold diurnal change in K.
The curves b and 6 are for the linear cosine form
of K also with K, = 10° em?/sec. The value of
o=0.8 chosen for curve 5 gives the same 18 fold
diurnal varation in K as for eurve 3, Curve 6 isalso
for the linear cosine form with the same values
of K, and « as for curve 5, but for Lat 60° N,

7.3 Dimensional analysis

Before proceeding to discuss these profiles, it

‘would be desirable to examine the solution of

Eq. (1) from considerations of dimensional ana-
lysis, If G is constant and form (9) is used for K,
the solution of (1) can be formally written as

V/G =4 (Kﬂ’ wpf: @,z t) (22)

If linear cosine form is used, then & gets replaced
by « in (22).

In this expression, z and ¢ are independent
variables and the remaining four terms in the
bracket are the four relevant parameters. From
dimensional analysis, we can therefore write
V/G@ as a function of four independent dimen-
sionless combinations involving the five quant-
ities, The parameter a however is already dimen-
sionless and therefore the number of such com-
binations reduces to three. We can therefore write

v/6 = ¢, { () =50 a} (23)

From the first quantity in the bracket in Eq.
(23) we find that at any latitude, heights scale
as Kot . Infact K, is the only quantity with
which z is associated and this is the only seal-
ing that can be observed without interference
from other relevant parameters. Considering
next the effect of @ we note that this parameter
is not coupled with any other variable and there-
fore the solutions for each value of ¢ may be ex-
pected to be independent of the variations in
other parameters, s.e., they cannot be scaled.
This is apparent from curves 3 and 4. Tt is also
interesting to note that the jet level is lower for
higher value of a.

The maximum jet speeds are 1.6 G and 1.34 ¢
for profiles 4 and 3 respectively,
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Comparing next the profile 5A with 3A. we
note that here also, the jet level for the linear
cosine form is lower than that for exponential
cosine, though the magnitude of the jetis appro-
ximately same. Because of the complicated
nature of the oscillations involving a number of
independent parameters the height of the jet
Jevel does not scale exactly in the ratios of square
roots of Kpin,

7.4 Latitude dependence

The dependence of solutions on latitude comes
through the coriolis term f. From the first
term in the brackets in Eq. (23) it is seen that
height scaling may be made through the term
—t  However, & straightforward scaling cannot be
expected because of the interference from w and
time terms. The dependence of the amplitude of the
wind oscillations on the termf/w was confirmed by

the time of maximum K (B) using various forms of K(zt).
profiles, the solutions are analytic and hence do not converge at 4 km, the artificial
infinity for the numerieal solutions.

v/e
Fig. 7. Comparison of the wind profies approximately at the time of maximum jet (A) and at

Except for the first two

obtaining the solutions at 15° and comparing them
with solutions obtained by putting 2e instead of
w in the linear cosine form of K (z.f). The hodo-
graphs in both the cases were almost identical
The quantity | 1 — f/e | becomes approximately
same in hoth the cases. This quantity also enters
the solution given by Buajitti and Blackadar
(1957). A weak resonance indicated by this term,
in the amplitude of oscillations was also observed
at 30° where f=ew. All other parameters remaining
same, the amplitudes of wind oscillations decreas-
ed slowly on either side of 30°. This may be con-
trasted with the comparatively sharp fall in the
amplitude of wind oscillations observed by Pacgle
(loe. cit) in his calculation of thermal wind oscilla-
tions at 37° instead of 30° by Holton’s model (Hol-
ton 1964), Supergeostrophic winds decrease with
latitude above 30°. Thus, as compared with 1.6 &
at 30° for ¢ = 2.303, the value was only 1.5 @
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Fig. 8. Comparison of varions forms of mean daily profiles of
the eddy transfer cocfficient in the planetary boundary layer

at 45°, Similarly using the linear cosine form of K
with & = 0.8, the maximum jet wind is 1.34 G at
30° but only 1.27 G at 60° as seen from the profiles
5 Band 6 B in Fig. 7. These curves also show a
significant feature that the height of the maxi-
mum jet wind decreases with latitude and the
height of the planetary boundary layer (i.e., the
layer in which K affects the wind field) also de-
creases similarly.

7.5 Height dependence of K

We shall now compare the profiles 1 and 2
obtained with z-dependent K with profiles
3 and 5 for z-independent K. Tt may he re-
called that the value of a in profile 3 is same as
the mean a(z) for Cedar Hill profiles and K ../
K in for profiles 3 and b are identical.

The irregular nature of 1B and 2B may be
ascribed to the corresponding irregularity in the
K-profile. Comparatively, the profiles at the time
of maximum jet show this feature to a lesser extent
in spring and do not show at all in winter.

The effect of z-dependence of K is seen to
be felt more in the upper layers. When K dec-
reases with height, (profiles 1and 2) the profiles
converge fast at about 2.5 km level. However,
for height independent K amplitude of oscillation

is significant at these levels and increases with
amplitude of K, apparently giving unrealisti-
cally high values of planetary boundary layer.
It appears therefore that K should decroase fast
at upper levels,

8. Concluding remarks

It is thus seen that the exponential cosine form
of K (z,t) with proper parameters for amplitude of
K is capable of generating the observed magnitudes
of supergeostrophic winds. The Cedar Hill K(z, t)
deduced from the Fourier analysis of log K is
therefore a step towards obtaining the correct
picture of the diurnal variations of K(z, t) and
wind in the planetary boundary layer though it
must be noted that the actual phenomena may
be much more complex than that depicted by
the simple model used here. In Fig. 8 we compare
the mean daily profiles obtained from the Cedar
Hill K (2, t) with those of others. The qualitative
agreement with the Leipzig profile and Estoque’s
profile lend some support to the functions used in
this work, though the functions are purely empi-
rical. Haltiner’s K profile obtained from
Blackadar’s 6 hourly observations is the only
exception to the general behaviour of the K-profile
and is rather enigmatic. It is felt from the
present work that six hourly ohservations are not
adequate to deduce K (z. t). This may be seen
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from Figs. 5 and 6 where the maximum winds do
not occur at the time of Ky, but after it, the
delay depending upon the latitude, that at 30°
being about 3 hours. This 1s due to the inertial lag

V. V. SHIRVAIKAR

problem is however open and scope exists fof
repetition of Blackadar’s pioneering experiments
but with the observation intervals reduced to
one¢ hour or less and extendcd to cover all the

determined by the coriolis parameters. The seasons of the year,
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