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Numerical solutions for a two-dimensional linear mountain wave model for a baroclinie compressi-

ble atmosphere have been obtained. The techniques developed for smaller obstacles have been suitably adopted for
application to extended topographic features with real air stream characteristics. Computations for different situa-

tions when mountain wave observations were available have

discussed.

1. Introduction

The mountain wave problem in two and three
dimensions have till recently been tackled analyti-
cally. It is, therefore, quite restricted in applica-
tion to real atmospheric conditions. Sawyer
(1960) was, perhaps, the first to attempt the
integration of Scorer’s equation by a quasi-nume-
rical technique. Later, Krishnamurty (1964) used
a two-dimensional model in z-s plane (where, s is
entropy) to obtain the solutions by a numerical
marching scheme. Pekelis (1966, 1969) end
Onishi (1969) have also attempted to obtain the
solutions by numerical methods. However, these
methods except for the one by Sawyer has not been
used for extended topographic obstacles under
real atmospheric condit'ons., Sarker (1967)
and De (1973) have used the above quasi-numeri-
cal method for real conditions for the Western
Ghats and the Assam hills respectively. We
present in this paper a fully numerical technique
of solving the two-dimensional mountain wave
equation. The method is similar to that by Pekelis
(1969).

2. Governing equations

We consider a two-dimensional ( z-z ) steady
state linear model in a compressible inviseid at-
mosphere. If a westerly airstream with velocity
U (2), temperature T' (z), density p (z) and pres-
sure P () is subjected to a small perturbation such
that the perturbation quantities are represented
by u (z,2), T (2, 2), p (2, 2) and P (%, z), we can li-
nearise the equations., 'The equation for the per-
turbation vertical velocity w (z, 2) for such a sys-

been made. Important aspects of the results have been

tem can be written as,
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Here C4=XRT, y=cpfcy, ratio of specific heats
at constant pressure and at constant volume.
it is gas constant C is velocity of sound, g is acce-
leration due to gravity. y= — (d7//dz) is the lapse
rate. We introduce the following for brevity
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y* is the dry ad abatic lapse rate,
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Assuming M (z)~1 for wind speeds of the order
of U = 50 m sec™™ we get,
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The equation of continuity can be written as,
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Accordingly we introduce stream function i de-
fined as:
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The distribution of  (z, 2) in basic flow is given

by
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Equation (3) then transforms into,
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We introduce dimensionless variables defined by
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where, H is the length scale selected.

The equation then reduces to,
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For the sake of convenience we drop the wave
sign i1 further part of the paper, although the va-
riables will be the dimensionless quantities as de-
fined above. Equation (8) is the final mountain
wave equation for our model in terms of the de-
pendent variable ¢ (x, z).

Boundary conditions

Equation (8) is to be solved for a finite region
for which following boundary conditions are used.

(1) The upstrcam boundary condition : We assume
that far in advance of the obstacle the motion
approaches the undisturbed flow.

¥ (z,2) > P(2) Whenz—>— o (10)
and in the region of integration the motion is
finite, i.e.,

|g(z.2)| < —ax <z< o

(i) The lower boundary conditicn : We
assume that the flow at ground is tangential to
the surface. On linearisation, we get

w(z,0)="U (0)%xf($)

where, £ () is the ground profile.

~ _ UO ¥
2—0 U(O) ’ ax

3x
or P (z,0)=— ¢ (a) (11)

This gives,

Thus the ground profile is a streamline.

(iti) Upper boundary conditicn : In the
present work we assume that at height L there is
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Fig. 1. Area of integration for the problem

no perturbation, i.e.,

¥ (2, L) = ¥ (L) (12)
and the height L being non-dimensional with
respect to H. It may be seen that equations
(10) to (12) are non homogeneous. These con-

dition. can be made homogeneous by the follow-
ing transformation—

hed=69+ (17 Je@ -2
(13)

which is one of the requirements for solving
boundary value problem as eigen value problem,
Then equation (8) is rewritten in terms of the
new variable as
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and the boundary conditions (10) to (12) become,
|y (2, 2) | < o
¥ (2,2) > ‘F; (2)

when — oc < 2 < oc

when z - — o (15)

and ¢ (z,0) = ¢ (2, L) =0
In (14) and (15) %,(2) is given by

Z
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3. Numerical solution

The numerical integration is carried over a re-
gion extending on either side of the obstacle. The
area is shown in Fig. 1. The vertical grid length
along z-axis is Az =L[N where N is number of
levels and L is the height of the upper boundary.

We replace the derivatives with respect to 7 in
Eq. (14) by finite differences and re-write Eq.
(14) as

" (1) + 4,9, (1) + B, (2) =6,
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--------------------
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General form of equation (17) is,
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= @F;,
t=1,2,,.....N-1
where, ¥" (i) = 22:;1 L ﬁ,z e 5 S /-1
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The system of equations (17) represent ordinary
differential equations for N—1 levels. These may
be reduced to a canonical form such that it be-
comes a system of N'—1, independent equations in
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a variable ¢, (x) which are linear combinations of
Yy (n), n=1,2, ...., N—1 provided the matrix,

rA,C’a 0 ]
14; Gy
0 B, 4, C,

[
I By_3 Ay Oy |

L 0B
has real and distinet roots. In a sy.tem where Bi,
and Cj;are positive the eigen values are real and
different. Consequently, the system (17) can be
reduced to canonical form.

[4]=

N—2 ‘4.’\'——1

Let [ ai;] be an eigen vector/matrix and ai=
{@;},7=12,...., N—1bean eigen vector cor-
responding to an eigen value Ai. We denote,

V=P (&) ={ (1), % (2), ...... . P (N—1)}

T=G(@)={6(2),6:(), ...... Gy @)}
$=[ay] ¥
Thereby Eq. (17) reduces to
' +Aid =i Gs (18)

The boundary conditions formulated in terms

of the new variable ¢ are :

The undisturbed value of ¢; is
bio = 2y P(1)+ ﬂigq’l(‘ﬁ)—l— ......

+otin2 Py (N—1) (19)
Here ¥, (k) are the values of ¢;(z.2) at the kt" level
in the basic flow.

I$i(z) | <
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Equation (18) is solved numerically to deter-
mine the values of (x).

where —oc <2 << o

when g—-—oc

4. Method of computation

The computations were carried out with the
help of a high speed electronic computer. To
start with, from the data of wind and tempere-
ture in the basic flow, the parameters K(z), F(z)

and stream functions ¥(z) are caleulated by
using equations (6) and (9) respectively. The
matrix [4] is also set up by calculating the values
of its elements from the above parameters.
The eigen values of [A] are obtained by using
a standard programme based on ‘Strum sequence’
property. The corresponding eigen vectors are
determined by means of iteration. All the
eigen values of [A] do not represent the real
waves in the atmosphere of our interest,
Tor this purpose we neglect the eigen values

which correspond to wavelengths > 50km.
The choice depends upon the nature of investiga-
tion, and the scale factor H. From the eigen
values ¢, is computed using equation (19). At
the levels for which the eigen values have been
neglected ¢y, is put equal to i, However,
for computation of ¢, at other levels we proceed
as follows,

For A; > 0 we assume that ¢,; = ¢, and the
marchiug scheme adopted is

ditrr = (% D A2 + (2 — Az®N)dir—da—1

The marching scheme is stable for Az <2/4/A

For ;< 0 we write cquation (18) in finite
difference form

b 11 + it _1—2+dir + X AaPbix —(Fh AT*=0
(21)

and is solved by iteration.

In equations (20) and (21) & represents the
value of ¢ at 4¢th vertical level and Ath horizon-
tal level. Thus ¢ is obtained at each vertical
level and for each horizontal grid point. Then,
using a standard programme we invert the eigen
vector matrix [ aif] to obtain the values of ¢ (z.2:)
from the computed ¢ field,

(@, 2) =[] ¢

Finally the stream function ¢ (z,2) is recovered
from the transformation,

U9 = o D — (17 ) 6@ + T PO

at all grid points.

5. Resulis and conclusions

Using the method described above we have
computed the streamline displacements for a
fow cases. The distribution of F(z), K(z) para-
meters and the associated streamline displace-
ments are shown in Figs. 2 to 6. The computa-
tions have been made for a small bell-
shaped obstacle (a=2 km, b= 1 km); a large
bell-shaped obstacle (a=20 km, b=1 km) and
the Assam hills, For large bell-shaped obstacle
streamline displacement pattern are not shown

here.
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Fig. 6. Streamlines displacement pattern for Assam hills

The average elevation of Assam hills along
west-east direction is represented by combining
two ridges (Naga and Lushaifhills) as

__ a®hy a’b,

i) = a*+a? + @*+z—d)?

where by and b, are heights of two ridges, a is the
half-width and d is the distance separating the two
ridges. Tt is seen that the streamline displacements
are confined to the downstream side only. On the
upstream side in case of large obstacles there are
some feeble oscillatory features which are not
important. The vertical variation of the dis-
placements is cellular in nature being alternati-
vely positive and negative upto a height of about
10 to 15 km. The wavelengths associated with
smaller obstacles are between 7 and 11 km and
those associated with large obstacles are of the
order of 30 km or more. For Assam hills the
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wavelengths computed by this method on 23
November 1966, 1 December 1966 and 29 Jan-
uary 1971, are aporoximately 27, 30 and 356 km
-espectively whereas those obtained by analy-
tical and quasi-numerical methods (De 1973),
for the first two cases were of order of 22 and 28
km. The absolute magnitude of the streamline
displacement which are of the order of 200 m
~ppear realistic. Satellite cloud pictures from
WSSA-3, ESSA-8 and ITOS-1 support the exist-
ence of the wave cloud in Assam-Burma and
neighbouring region during all these occasions,
The observed wavelengths, as revealed by satell-
ite pictures (De 1971) are 23 and 20 km on 23
November and 1 December 1966 respectively.
For 29 January 1971 it is 30 km.

The following conclusions may be drawn from
the study :

(#) The model appears suitable for studying
mountain waves associated with real
atmospheric conditions and actual ground
relief of extended dimensions.

(1) The results obtained by this method
for small as well as large obstacles are
in fair agreement with solutions obtai-
ned by analytical and quasi-numerieal
methods,

(#2) The results show that smaller obstacles
give rise to streamline patterns with pre-
dominantly shorter wave lengthe. On the
other hand, the streamline patterns associ-
ated with large obstalc2s show oscillations
with predominantly larger wavelengths.
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