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ABSTRACT. Sla1isli5:al analysis and prognosis of minimum temperatures with reference to states-determining
threshold values, employing also Markov chains, is attempted for a citrus- growing area of Greece. [n-state persi-
stence and between-states transition probabilities of minimum temperatures are associated with common weather

patterns.

Markov chains theory is shown to be a vigorous statistical tool allowing consicerable (longer than a week)

predictability of minimum temperatures.

1. Introdaction

Prognosis of minimum temperatures is an important
factor in taking tactic or strategic decisions in various
economic activities, especially in short and long 1ange
agricultural planning.

Synoptic weather forecasting is acceptably reliable
up to four or five days, even in the late eighties!
Forecasting a certain meteorological parameter on a
meso-scale, however, is not an easy task for a period
practically longer than two days. Therefore, statistical
forecasting of minimum temperatures, based on cli-
matic analysis only, becomes more realistic the longer
the forecast period is.

Study of minimum temperatures has been restric-
ted mostly to frost temperatures (c.g., Hocevar and
Martsolf 1971; Hatzidaki-Theou 1975; Bootsma 1976;
Gerber 1979: Fritton and Martsolf 1981; Liakatas
and Demitropoulos 1987). Markov chains, having
been applied to investigating meteorological parame-
ters as sunshine duration (Lestienne 1978) precipitation
events (Gringorten 1971; Alexandersson 1985) or
hourly temperatures (Hansen and Driscoll 1977),
could be a powerful tool in studying both below and
above-zero minimum temperatures. Their employ-
ment will be attempted here, aiming to minimum tem-
peratures statistical analysis and prognosis throughout
the year.

2, Using Markov chains in analysis

Assuming X, the value of a meteorological parameter
on day v, like minimum temperature, one of the practi-
cal problemsin meteorology is forecasting X, and parti-
cularly when it belongs to a subset E; (i=1,2. ..., V)
called a state, of a dismemberment of R. Considering,
frost, for example, it is important to know whether
X, e E;=R—or X, ¢ E,—= R+, where, Xe=Twip =T,

chording to Waldteufel (1980), a good autocor-
relation coefficient of X, and X,;, for k=1 should
be expected, deminishing rapidly with k2. Therefore
X, Ejand X, ¢ E; with i,jel, (L=(1,2,.., n})
are not independent and the Bernoulli product Jaw :

PX, e EpXyi1 e E)=P (X, e E)*P (X, 11 € E) (1)
for independent events cannot be applied. Instead
the following is valid : i
P(X,eEi, X, 11 Ep)=P(X, EEE)*P (Xv 1€ E}/Xv € EI) (2)

where, P(X,.: € Ej/X, € Ej) are the conditional pro-
babilities of the events {X, e £}, given that xX,0F
The decrease of the auto-correlation coefficj
k =1 allows the consideration : | cient for
P(X,¢E/XoeEip,X 1€ Eny XgeEp.. .. X, ;¢ E, )
=P (X. € Eiyf,\”‘_l € Ejv_.l) (3)

(69)
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Fig. 1. Yearly variations of mean monthly minimum temp. ()
as well as plus (..__..)yand minis | ) as standard
deviation
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Fig. 3. Actual (.. j and theoretical |

N temp. to remain lower than 7i -Si on day

meaning that the chain | X,} is a first order Markoy

chain (Kakoulos 1978).

Probabilities of the form

P, (ij) = P(X, 1€ EfX, € E) (4)

(i,j € I) are called transition probabilities from state
L, on day v to the state jonday v 1. When?P, (i.j)
are independent of time (v) they are stationar)
and the Markov chain homogeneous. In this case the
matrix

P(X,-1€E/X € EN=P (X ,eE/Xy¢eE)

P, (i) (5)

is called transition matrix. When n—2. e¢c.g.. a two

) probabilities of
I.
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Fig. 2. Yearly variations of persistence (below-limit--—and
above limit ..__.. )and transition (from below to above-
limit and from above to below limit — —) pro-
bahilities with reference to the 7—S; limit
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Fig. 4. Annual variations of the mean times of continuously
staving below (—) or above (- ) the limit 75— S5,

states Markov chain, (5) becomes

P, 1) P(1.2) |
P ' (6)
P, 1) P2,

For the elements of P the following is obviously valid ;

B (7
Assuming an initial distribution = (i), / e /2. where,
my (1) = a=P(Xg € Ey) and my (2) = r = P (X, € E,),
the probability P/i) of the event {X e E; called
absolute probability, is given by the relation

P, (i) = P(X, E)

o P, Gl i) 0P, (2.0) (8)




Fig. 5. Minimum temperature frequencies for

each month (1 to 12)

If ke N and at the initial time Xpe€ E, the pro-
bability that the system remains in E; for k con-
secutive days and then passes to E; Is :

P(A)=ak—1*g ©9)
where, A is the event : A= {X, € E, X, ¢ Ey,
X2€ E]_, ...... quf Eg}.

The mathematical expectation of staying in the state

El s :

m ) m 1
my = 2 k*prat—1— lim (& B*a*—Y)
k=1 m —>» k=1

=B{ lim (l-—am)[(l—a)}=1/B (10a)
m —=%
and respectively in the state Ej, :
my = lfy (10b)
with appropriate choise of E; and E, :
lor yiB+y BBty
lim Pt = B = | = (11)
k>0 terl | ylBty BBty

meaning that, in a long term (k—co) the probability
of being in a state is independent of theinitial state.

For €= 0 Eqn. (11) implies that there is at least
a nyeN:
11
\ (12)

iP"_-P,,o <e*
11

for all

nz=n,
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Fig. 6. Average cumulative probabilities of persistence below
a threshold (T ..—.., T+—Si2 — —), Ti-Si——) up to
eight consecutive days

For more details reference could be made to the
works of Hoel, Port and Stone (1972), Isaacson and
Madsen (1975) and Vasiliou (1983).

3. Scope and data

3.1. Analysis of minimum temperatures with Mar-
kov chains using 23 years (1961-1983) data from a
northwestern Greek meteorological station (Arta) is
attempted, aiming to determine :

(a) The actual probabilities of persistence of
T, in the same state for up to eight consecutive days,
having defined the states :

Y1 - E” = (—CD, T‘j'—'Sj) and Ej2 = R— E;
ye:En= (-—-'OO, TJ—S{/Z) and Eyx=R—E

bars indicating average values and S being the stan-
dard deviation, with 7€ [, the month index.

(b) For each of the above states the valuss of o
and ryand the transition matrices P; (k, A)

(¢) The n, for which Eqn. (12) is true for ¢ =10-5,

3.2. Similarly, by defining 16 states with : E,=
('_'m; _6)9 E|ﬂ=(22! +CD) and E|=(_ l{)+2* i’
—8+4-2%), i=2, 3, ...., 15, and using the same
data to estimate:

(a) The actual probabilities of persistence of T, in
in the same state for up to five days and the
transition tables for each month.
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Fig. 7. (a) Frequency of occurrence of a temperature state on day v -1,
r for January and July. and (b) Persistence time of the most temp-

temperature on day

erature state of January and July

(b) The days of first and last appearance of upper
limit of each state and for the corresponding

time scan (in a two-states space) E,—(— w.
upper limit), E,= (upper limit. o) the
absolute and the transition probabilitics.

4. Persistence and transition probabilities
4.1. Reference to statistical limits of temperatiive

From a three-dimensional graph analysis of mini-
mum temperatures frequencies (Fig. 5). it is obvious
that they are almost normally destributed within each
month and so are the monthly maximum frequencies
within the year. Temperature scatlering is greater in
winter months, whereas the more peaked distribution
curves in the summer may possibly mean easier stali-
stical forecasting of minimum temperaturcs in the warm
season. Thus, the probability of the most Irequent
temperature in a month is highest in June. reaching
359 and lowest in January, not exceeding 207,. The
range of the annual variation of average monthly
minimum temperatures is approximately 14°C above
4° C in January, whereas S; varies ltom about 3.5° C
in January to 2° Cin July (Fig. ). However. T, may
be as low a; —6° C in January (Fig. 5).

To study extreme temperature cases (with probabi-
lities lower than 16°,) the persistence and transition

starting from a certain

probabilitics for the states £; (—oe, T;—S;) and
Ey=R—E); are plotted for each month in Fig. 2.
The probability that a minimum temperature remains
higher also the next day is approximately 90°

throughout the vear. The complementary prob“-
ability (10%,) indicates the chance of the lcn{pcrzllure
to ‘fall  below the limit. The probability that the
temperature remains below or jumps above the limit
varies up to 207, around the 56°, level. possibly in
agreement with the weather changeability, determined
by the passage frequency of synoptic systems of
various patierns (Lahotis 1977  and Flocas 1984),
as well as the proximity ol the sea. Thus, for a
temperature < lower than 7,8, its probability of
becoming higher is more than 509, only in sﬁriuu,
whercas the probability of staying in the same state
E' s as high as 707 in November when passage
of cioud sysicms over west Greece also shows relevant
persistence (Laliotis 1977).

The actual along with the theoretical (estimated
with Eqn. 3) probabilities of tempzrature to remain
lower than 7,—S5; on day v--1 are plotted in Fig. 3.
Their yearly variations are in phase and quite those to
cach other, though the theoretical values are slightly
underestimated in spring and overestimated in autumn




MIN. TEMP. EMPLOYING MARKOV CHAINS

RERIOD OF TEMPERATURE STATE

N A S TN S LA N S
§ ¥ o2 g2 g oo W 2 s ':I‘
| I | [ | 1
2 = :': = @ 2 & 8 8 5
S 8 = 8RR 3R 2 g o
100 T T T T T T L T
/’
-
-
1‘ /
%0 £ Ve
M e
I v 7
2 \
. 7
— \I, /
; 60 \\\ /
: /
< “
8 \
& 40 - / .
o / e
\ / \\\
\ / %
~
20 -// e e
\ /n’ \\‘ -~
v Vg
L~ =
’_/
0 —- L i = i
-4 0 &4 [ ‘2
TEMPERATURE(®C)

Fig. 8. Variation of the transition matrix elements a(—), 8 ( .

y(--

The annual variations of the mean times of conti-
nuously staying below or above'the limit 7, S, estima-
ted by Egns. 10(a) and 10(b), are shown in Fig. 4. Be-
low-limit persistence is more constant (about two
days) whereas persistence above the limit varies bei-
ween 10 days in April and 14 days in November, in
agreement with corresponding probability variations
in Fig. 2.

Averaged over all months (due to small yearly vari-
ations) actual cumulative probabilities of persistence
below a certain threshold up to eight consecutive days
appears in Fig. 6. As expected [because of Eqn. (9),
suggesting an exponential pattern of probability vari-
ation, and the rather good agreement of probability
variation tracks in Fig. 3] probabilities decrease ex-
ponentially with incrcasing time and lowering of the
limit from 7; to 7, -8, starting with 509/ for the higher
and 167 for the lower limit. This variation pattern
would allow study of persistence withthe Poisson dis-
tribution (Prezerakos 1979). The theoretical values
were almost indistinguishable from the actual values
and this is why they do not appear in the graph. Eqn.
(12) is valid with an accuracy ¢ — 10— for vy = 12
days for all months except April and May, where
i'n == 8.

Consequently, the rather good fit of theoretical to
actual probabilities curves allows employment of a

-)and & (——) along ten minimum temperature states

5 1)

vigorous statistical theory — the Markov model — to
estimate probabilities of extremely low minimum
temperatures.

4 2. Reference to critical temperature thresholds

Since there are certain temperatuie values critical
for plant growth and development (Alessi and Power
1971: Watts 1972; Landsberg 1975), animal life and
production or human activities, it is advisable to use
these as temperature thresholds in studying persistence
and transition probabilities. Therefore, the minimum
temperatures range was subdivided into sixteen states.
as in Sec. 3.2.

The frequency of occurrence of a temperature state
on day v--1, starting from a certain temperature on
day v, is given for January and July in Fig. 7(a). Cen-
tralization of maximum frequencies along the main
diagonal in both months shows that the most probable
value of T,., is T,. The density of the frequency
isopleths suggests, once more, the broader scattering
of temperature in January, in comparison with July,
whereas the central isopleths determine the most com-
mon states; 6° to 8 C in January and 18° to 20° C
in July, The tendency of a temperature state to repeat
itself the next day is not valid for temperatures be-
low —4°C, meaning that extremely low minimum
temperatures do not persist, therefore, considered tran-
sient phenomena. Such low temperatures are usually



74 T. CHARANTONIS axp A. LIAKATAS

due to the quick southward-passage of cold fronts
associated with polar air masses. Persistence time
of the most common temperature state may be four
days in July, about double that in January (Fig. 7b).
As temperature departs from its most common value
the probability, that it changes the next days, increases.

In Fig. 8, the variations of the transition matrix
elements «, B, ¥ and & for the first ten minimum
temperature states are presented. Also given are the
time periods determined by the dates of the first and
last appearance of the upper limit of each state. Study
of @, 8, y and & was restricted to within these periods
to insure homogeneity of Markov chains. Fig. 8
allows generalization of a previous observation; when
the state upper limit is relatively low, lower than this
minimum temperatures do not easily persist, whereas
higher temperatures tend to repeat themselves. The
probability of persistence below the state limit also
the next day increases the higher this limit becomes
(8). In agreement with this, the frost period is de-

fined between 11 November and 15 March, whereas
temperatures lower than 14° C may be observed al-
most throughout the year (19 July-7 July). Transi-

tion probabilities of above-limit temperatures (g8) also
increase with limit becoming maximum when the limit
is equal with the average for the corresponding period
temperature.  y— and ¢— curves have a mirror-
effect pattern, as being complementary to &and S
respectively. It can also be observed that frost has
509, persistence and transition probabilitics whereas at
both sides of the 8° C limit (approximately the yearly
mean minimum temperature) persistence probabilities
are equally high (about 85%)and transition probabilities
equally low (about 15°)).

5. Conclusions

Markov chains theory is a vigorous statistical tool
that can be used for analysis and forecasting of mini-
mum temperatures below or above a threshold value.
Thresholds may be determined either by statistical
parameters (statistical thresholds) or by the response
patterns of plant, animal and human physiological
processes to temperature (critical thresholds).

From the previous considerations it is obvious that
when the forecasted (with the use of synoptic models)
minimum temperaturc has a rather low (lower than
about 30%,) probability to occur, theie is a great demand
for supplementary assistance from Markov matrices
or estimated parameters (e.g., mean persistence time
and mean return time).
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