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Large scale vertical motion
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ABSTRAOT.  The linear second order differential opuation in w(p-velocity), derived from the equation of
vorticity, nezlectiny its solenoidal by tilting torms, has furl..ha_r_ been reduced to Poisson’s equation, by transforming
(x.¥,P) co -ordinate system into (x,y,p ) system where P—p+/o/f ;o and f beinz the static stability of the atmoesphere
and coriclis parameter respectively. This transformed equation has been examined for the computation of diabatic
heatinz temperature advection and vorticity advection components of larze scale vertical motion by the methods

of three dimensional relaxation.

1. Introduction

The well known quasi-geostrophic o equa-
tion (Haltiner 1971) in (x, y, p) coordinate system
may be written as follows :
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where,

o, is statie stability of the atmosphere ;
f. s coriolis parameter,
H, is diabatic heating factor defined as
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@, is the amount of heat supplied to a unit mass
ofairand ¢,, the specific heat of air at con-
stant pressure;

V, is the velocity of air,

¢ is the geopotential of contour heights and the
operation
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First term of R.H.8. of Eq. (1) ViH
represents the effect of differential diabatic heating
or cooling. Let us denoteit by . The second term
—VXVVa¢/ap) contributes to w due to den-

sity or temperature a dvection (adiabatic heating).
Let it be denoted by Fy.
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The third term,— [J(¢,V?3)] say Fr,
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gives the fraction of o due to the advection of

vorticity.  Therefore Eq. (1) may be written
as
~2
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Bince this is a linear equation in w, the effects
of terms on R.H.S. can be studied independently
taking one af a time and the resultant vertical
motion may be obtained by superposition of
all these,

2. Transformation of «» equation

By assuming lapse rates y and y4to be cons-
tant, ¢ becomes a function of pressure only.
For the present we suppose that stability index
is equal to the mean of ¢ at different standard
pressure layers, i.e.
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o—o canbe taken as constant.

F =

Thus

For the diabatic component only, the w equa-
tion, then can be written as
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Now consider the coordinate system. (x,y,P).
where

(3)
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we get :—;’- = %—-" i—;—’ and ’—P;:'=;.—a % (5)
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Eq. (3) then reduces to
32w 1
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or Ve = . VstH (6)
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where %/ Py 4= o - Nz
3. Three dimensjonal relaxation scheme
The equation o Ve = Vi*H can be

solved for @ by 3-dimensional relaxation me-
thod. A suitable 3-dimensional grid consisting
of say, 10 points (i=0, 2....9) along latitude
(x-axis), 6 grid-points (J = 0,1,2,3,4,4,5) along
longitude (y-axis) and 5 points (k=0,1,2,3,4)
corresponding to the pressure levels 900, 700, 500,
300 and 100 mb along vertical P-axis may be
constructed.

Suitable grid length of 2° latitudes (approxi-
mately) (k) may be taken along x-and y-axes.
Thus A =2 x 105 m.
Along P—direction the grid length (1) becomes
1 = (\/o[f) % 200=55800 units,
where o= 4°C/100 mb and f=7.3x105s0c L
Eq. (6) can be written in the form of diff-
erence equation as
o i+ 4, k) + o (—15, 8 + o @ -1, k)
w (i! j"ka) + fs [CIJ (fi! j1 k + ]) + w (?;: js k—l)]
0 1 . :
—2(2+°) w (3,5, k) — = [HE+1, 5, k) +
H (i—1,j, k) +HG, #+1, k) + H (3, j—1 k) —
4H (3,5, k) =0
h2
9P = D T 12.8
orr=3.6

4. Computation of H-fleld

The atmosphere gets heated by the infrared
terrestrial radiation coming from the surface
of the earth. The quantity of heat received at
any point of the atmosphere depends on the
position of the point, which exponentially dec-
reases along longitude and vertical. If we take
the reference of (x, y, P) co-ordinate axes, the
quantity of heat H at any point in the space can
be written as,

where
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where L is the wave length of earth’s radia-
tion.

The expression given below as
H = A sin (2nz/L) exp (—py). exp [—A(Fo/P)]

mav be justified for giving satisfactory values
of H at the grid points of the atmospheric para-
llelopiped considered under the present scheme.
Also experimental evaluations have shown that
the following values of the constants 4, L, p
and A can be acceptable.

4 = 6.0° C/day

L — 15.0 microns = 15.0 x 10~%
p=A=3

m. and

5. Boundary conditions

w may be assumed to be zero at top of the
atmosphere and also at each grid points on the
side walls of the parallelopiped. It is not justi-
fied to make the e vanished at the bottom of
the atmosphere, which is 900-mb level in the
present case. At this level vertical motion de-
pends mainly on the divergence in the frictional
layer (100 to 1000 m above ground) and can
be computed with the help of Ekman spiral.

As suggested by Das (1969) vertical velocity at
the top of frictional layer may be given by-—

wyg = — %—‘/—g—'}: sin 28. 2%

where K is the coefficient of eddy viscosity and
8 represents the angle between actual and geo-
strophic winds.

For g = 980 cmsec—?, p,==10"2 gm. em—?

f=10"4gec?, K = 10%m? sec— and § = 15°,

the vertical velocity at py=900-mb level becomes
w= — 35X1087%

which may be taken as the initial values at the
bottom grid points of the parallelopiped.

Acknowledgements

The authors are deeply indebted to Dr. P. K.
Das for drawing their attention to the pro-
blem and for giving valuable guidance. They
are also grateful to the referee for his useful
suggestions,

India met. Dep. Sci. Rep. No. 114,
N%:’od weather forecasing with the barolropic

H =f(L) z,Y P):
REFERENCES
Das, P. K. 1969
Doos, B. R. 1966
1971

Haltiner, G. J.

Numerical Weather Prediction






