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Planetary motion calculation method
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ABSTRACT. An accurate method for caloulating the unperturbed motion and position of the earth, a planet,
or a satellite, moving in an elliptical orbit, as a function of time, is presented. The method is easy to apply and is
suitable for use in the modelling of various types of problems in meteorology and geophyuics.

1. Planetary motlon in polar coordinates

Some of the problems encountered in the sciences
of meteorology and geophysics require a know-
ledge of the position of the earth in orbit as a func-
tion of time. A suitable method for making this
calculation, as well as the calculation of the
position of the other planets and the satellites in
motion in their orbits, is derived as follows.

If polar coordinates are used, with the origin at
the centre of mass of the system, and if the ex-
ternal forces acting on the system are negligible,
the angular momentum is given by

e (pr ;} r = constant

(1.1)
where r is the radius vector
¢ is the angle in the polar coordinate system
é is the angular velocity
p i8 the reduced mass of the system;
B = My ngf(my - my)

m, and m, are the masses of bodies 1 and 2 of
the system (e.g., the sun and the planet).

Hence,
#(d$ [ dt) | 2= L [ (2.p) = constant (1.2)

which implies that equal areas are swept out hy the
radius vector, in equal time increments (Kepler’s
second law).

The orbits of the planets and the satellites of the
solar system are ellipses, so that the area swept out
by the radius vector during a complete rotation
period, T, is the area of an ellipse #* a* b. In Fig. 1,
the motion of a planet, (at position P), travelling
in an elliptical orbit around the centre of mass of
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the system, C.M., after an elapsed time, ¢, is shown,

Integrating Eq. (1.2) over a time period, ¢, and
then integrating over the time for a complete
rotation period, 7', permits the position of the
planet, at any given time, to be represented by

¢ it
J f"d¢/2=[(n'a-b)/1‘]-j
0

2. Parametric representation of the orbit

If the position of the planet, at P, is referred to a
coordinate system centered at the geometric centre
of the ellipse, at O, the problem may be very con-
siderably simplified using the parametric form for
the ellipse, indicating the orbit,

z=a0c080, y=>bsinb

dt
0

(1.3)

(2.1)

where the meaning of the notation is shown in
Fig. 1. Also noting that

tangd =y [ (z—a‘e) (2.2)
where e is the eccentricity, (a constant parameter
for an ellipse), and then using Eq. (2.1) in Eq,
(2-2) results in

¢ =arctan [(b/a)sin 6/ (cos0-—€)] (2.3)

Differentiating Eq. (2-3) with respect to time, ¢,
yields

ot L
dt_ab

[cos 8 . (cosf—e) + sin?h]
.do/dt (2.4)
[a®.(cos 6—e)® 4 B2 . sin? 6)
A useful relationship for the radius vector, r, is
given by

= (z—a.ef+ ¢y

(2.5)
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Fig. 1. A planet moving in an elliptical orbit

and in view of Eq. (2.1)
r? = (a'cos § — a€)® + b2-sin? 6 (2.6)

Substituting Eq. (2.6) in Eq. (2.4) and simplifying,
dé/dt = a-b [ (1 — e "cos 6) [r2]-deldt  (2.7)

thus,
r2-d¢ = a-b (1l — e cos 6)db (2.8)
Eq. (2.8) may now be substituted in Hq. (1.3) to
obtain
(i
a*b(1—e*cos 0)dg =2 mabt|T (2.9)

Therefore,

0 —esind=2mt|T (2.10)
Eq. (2.10), (known as Kepler's  equation),
gives the accurate position of a planet in orbit at
time, ¢. If 6;is an approximation for 6 at step j.
an improved approximation at step J-1 ig given
hyv

O =2t T + e sin (2.11)
Hence. by beginning with 6, =2 -m-¢/T and repeat-

ing the ealculation of Eq. (2.11) until (6;41—8))<e,
where e is the aceuracy desired, a solution can Le
obtained for Eq. (2.10). The eccentricity. €. is re-
lated to the semi-major axis. a, and the semi-minor

axis. b, of the ellipse hy
e =1— (b/a)2

When Eq. (2-11) is used for the position of the
earthin orbit, e = 0-016722, (p. 141, Allen 1973),
this method converges rapidly, (e.g.. to 7 signifi-
cant figures of accuracy within about 3 or 4 suc-
cessive iterations. when interpolating using table
46, p. 142, of Abramowitz and Stegun 1964),

The method described is easy to use and is con-
venient for application when modelling meteoro-
logieal and geophysical problems which require an
accurate knowledge of the earth’s position in orbit
(e.g.. the calculation of the solar zenith angle at
various times of the year, or sunrise and sunset time
calculations. ete). Eq. (2-11) may also be used for
modelling astronomical problems involving the
unperturbed orbital positions of the planets and
the satellites of the solar system.
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