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ABSTRACT. Constrained linear inversion technique is shown to yield accurate and numerically stable
solution subject to proper choice of constraint. Some selection rules for determining the suitable constraint
parameters are discussed in light of the numerical experiment.

1. Introduction

Inference of atmospheric temperature structure is
now routinely done by means of satellite-borne radio-
meters and the advantages and limitations of such a
procedure have been discussed widely in the literature.
The basic theory of remote sensing of temperature
(King 1956, Kaplan 1959) involves measurement of
atmospheric radiances in some selected channels of
small frequency width. The 15 x m absorption band of
the CO, is found to be most suitable for this purpose as
CO, has alconstant mixing ratio in the atmosphere, atlea-
st in the meteorologically important part of it, and inter-
ference from other atmospheric constituent is minimum.
Change of atmospheric transmission from centre to the
wing of the band introduces a measure in term of the
layer of atmosphere from which the maximum amount of
radiation emerges in a particular channel. Expressed
mathematically, the measured radiance, I(A) in a
particular channel of central wave length A is related to
the Planck function B(}A, x) of the level x in the form

X1
[(;\)ﬁfﬁi;;gi) B(Ax)dx (1)
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where =(A, x) is the atmospheric transmittance at
level x. The above integral equation is a non-linear one
as the Planck function varies also with wavelength. An
approximate linear form of the Eqn. (1) can be obtain-
ed by replacing the actual Planck functions by those
corresponding to a fixed reference wave length A through
aleast square fit : :

B(A\ x)=a B(%x)+ b @

where @, , by are the relevant coefficients. In terms
of the modified Planck function and radiance values,
Eqn. (1) takes the linear form :

“:l( r®— ba) =60 - fm, %) B (x) dx

3)

where the kernel function K(A, x) is] the vertical
variation of the transmittance function. Out of the many
methods available in the literature for solving a set of
Fredholm’s equation of first kind the simplest one is
the direct inversion method in which the above set
of equations is approximated by a matrix eqation :

g=Af 4)

where g and f are column matrices with number of
elements same as the number of channels in the radio-
meter and 4 is a square matrix formed out of the
kernel function. Determination of values of the Planck
function and hence mean temperatures of different
atmospheric layers now involves simply the inversion of
the matrix 4. In practice, such a proeedure leads to a
physically unacceptable solution with large oscillations
yielding even negative values for Planck function. Such
oscillations persist even when a better approximation of
the integral in Eqn. (3) is made by introducing a larger
number of quadrature points and least square solution
is obtained by solving the equation

ATg =AT Af (5)

where, A is a rectangular matrix with more columns
than rows and AT is the transpose of 4.
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Fig. 1. Variation of kernal func-
tion in the vertical
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Fig. 3. Variation of error with Gamma
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Fig. 5. Assumed and inverted tropical temperature profiles

2. Linear constraint technique

Instability in the solution of the above ill-conditioned
system of linear equations arises as a consequenc: of
the existence of very small eigenvalues of the matrix of
kernels. One of the methods used to remove such insta-
bility is to impose some linear constraint on the solution
vector so as to filter out large oscillations. Physically
when we seek a solution of the integral Eqn. (3), we
essentially seek a set of B(x) value such that, for a given
matrix of kernels, the values of G(A) is equal to the
measured value within limits of experimental error.
Obviously, many (probably infinite) sets of B(x)
values will satisfy the above condition and an externally
imposed criteria must be applied to choose the most
desirable solution out of this infinite manifold of
mathematically plausible solutions. In most problems of
physical interest the solution appears in form of a
smooth function and a linear constraint can be construct-
ed so as to pick out the smoothest out of all possible
solutions.

AR T U W W R o

- wards any (n—1)th order curve.

The nth difference matrix D, can be formed by
noting that D, f is a column matrix whose first # elements
are zeros and the remaining elements are

AYfi = A i— A fia

where, Afi=fi—fia
The constraint equation :
JTDiD.f =0 (6)

implies that the sum of the squares of nth differences will
vanish—a condition required to push the solution to-
To obtain a smooth
solution to the inversion problem Egns. (5) and (6)
are combined through a Lagrangian multiplier and the
resultant equation :

(AT A+ yDnD,)f=ATg ©)

is solved. Mathematically, the diagonal and near dia-
gonal elements of the matrix A74 are incremented by
some multiples of the Lagrangian multiplier and this
leads to an increase in the eigenvalues of the matrix,
The smallest eigenvalue of ATA gets the largest incre-
ment whereas the largest one gets the smallest fractional
increment.

Once it is decided to apply the linear constraint
technique to the inversion problem, one is faced with
the task of choosing the nature of the Lagrangian multi-
plier suitable to the problem. The latter can be decided
upon aposieriori by choosing several values of y and
computing the residual g’-g where g’ is the radiance
vector calculated from Planck functions obtained by
solving Eqn. (7). The suitable value of y is the one for
which the residual is comparable to the error in measure-
ment of radiance values. Any higher value of y leads to a
case of over constraint and yields a solution which is
oversmooth at the cost of accuracy while a lower value of
y leads to an underconstraint case in which the residual
is minimised but the solution is not smooth enough.

The nature of the constraint best suited to the problem
at hand can be determined by comparing the results
obtained by using different kinds of constraints. In the
case where gross features of the solution are already
known from past statistics, a constraint can be for-
mulated (Twomey 1977) so as to force the solution
vector towards this statistical profile. Such a forcing is
however, not justified when the past data is either meagre;
or has too large a dispersion. The aim of the present
numerical experiment was to explore the possibility of
determining the nature of the constraint and the value
of the Lagrangian multiplier suitable for inferring
temperature from remote sensed radiances without
referring to the past statistics.

3. Design of the numerical experiment

The input for the experiment were the temperature
profile I of Fig. 2 and the atmospheric transxi:]ittance
values at selected pressure values corresponding to
channels with central wave numbers (incm1) as 669 .0
676.7, 694.7, 708.7, 723.6 and 746.7. The atmos.
pheric layer between the surface pressure of 1019.8 mb
and the top pressure of 0.8 mb is now subdivided into
forty-five layers of equal thickness in the 1 np scale and

. the temperature and kernel values are obtained at the
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logarithmic centre of these layers by fitting a fifth order
curve using the Lagrangian interpolation method. The
kernel functions are plotted in Fig. 1. The radiance
values J(A) are determined for the six channels by
using the trapezoidal rule for quadrature to approxi-
mately evaluate the integral in Eqn. (1). The vector g
is now obtained by a least square fit of Planck function
B(}, x) and B(x) where the latter correspond to a fixed
wavenumber 700 cm™1. After selecting the suitable
form for the constraint matrix H = D,T D,, the set of
fortyfive simultaneous equations in Eqn. (7) is now
solved by Jacobi’s method of pivotal condensation and
the solution vector f obtained. The radiance vectorg’
now computed by using the solution vector f in place of
planck functions used earlier and the fractional errors
| g—g|/gand|f—B(x) /| B(x)| are evaluated for seve-
ral decades of values of y.

Next, ten sets each of normally distributed random
errors of magnitude not exceeding 19, and 5% are
introduced in the vectot g and the above procedure
repeated.

4. Results

In the present study, second and third difference
matrices were used as constraints to recover the Planck
functions and hence temperatures. The Lagrangian
multiplier is allowed to vary between 10® and 10— and
the resulting fractional error in radiance value as well as
Planck function ate plotted in Fig. 3. It is seen that the
fraction error in Planck function attains a broad mini-
mum in the decadesy = 107! to ¥y = 10™® when the
second difference matrix is used as constraint. On the
other hand the error in radiance for both the second and
third difference matrices as constraints achieve a mini-
mum around the value y =10 %and this is the value of the
Lagrangian multiplier one would be forced to choose if
there is no other consideration.

In Fig. 4 result of inversion by using the second
difference matrix as constraint have been plotted for
different values of 5 in the case when the input vector
g contains normally distributed random error. Com-

paring the fractional error in Planck functions we find
that for second difference matrix as constraint the best
result is again obtained for y values between 10— and
108,

The prefile to profile sensitivity of the second difference
constraint is tested by applying this constraint on an-
other profile more representative of tropical atmosphere.
In this profile the lapse rate is assumed to be 6.5° C/km
upto about 100 mb and a rise in temperature by 2° C/km
thereafter. The result of constraint linear inversion in
this case is plotted in Fig. 5.

5. Conclusions

As a result of the above numerical experiment the
following conclusions are reached :

(1) The second difference matrix is more suitable as a
constraint than the third difference one. This is probably
a_reflection of the fact that in most parts of the atmos-
phere lapse rate of temperature is almost constant.

(2) Best result in terms of Planck function and hence
temperature is obtained for the value of Lagrangian
multiplier between 10~ and 103, Any smaller value of
y leads to the case of underconstraint leading to small-
er crror in radiance value at the cost of smoothness of
solution vector.

(3) The second difference constraint gives rise to
stable and acceptable solution in the above range of
values of y even when random error is present in the
observed values of radiance.
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