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ABSTRACT. A non-hydrostatic, barotropic, divergent model is proposed to study the interaction
of the waves in the cquatorial stratosphere. The study gives rise 1o a parameterg? which represents
the extent of the non-hydrostaticity of the equatorial atmosphere and essentially depends on the earth’s
rotation alone. By applying the method of multiple scales, it has been shown that the single layer
barotropic model can, among all the equatorial waves in the atmosphere, support the interaction of
Kelvin waves alone. The analysis shows how the interacting Kelvin waves transfer energy to generate
westerlies on the time scale 7/o® which is approximately 26 months that is known to be the period
of regular zlteration of zonally symmetric easterly and westerly wind regimes in the equatorial strato-

sphere.

1. Introduction

For prediction of weather on long time scales, meteor-
ologists have sought periodicities in atmospheric
motion. Correlation of weather with Il-year solar
period, lunar phases and sun spot activity are examples
of such periodicities.  Recently, attention has been
drawn to Quasi-Biennial Oscillations (QBO) and its
relation with the monsoon.

Quasi-Biennial Oscillations (QBO) are regular altera-
tion of zonally symmetric easterly and westerly windsf}
with a period of about 26 months. As pointed out
(Holton 1978), successive regimes} first appear at 30
km but propagate downwards at the rate of 1 km/
month. The downward propagation occurs without
loss of amplitude between 30 km and 23 km but rapid
attenuation takes place below 23 km. The two regimes
are nearly indistinguishable near the troposphere.
Another characteristic of the QBO is that the oscillations
are found to be symmetric about the equator with a

maximum amplitude of 20 m/sec and of half width of
about 12° latitude (Reed and Rogers 1961, Varyand
and Ebdon 1961).

Large-scale equatorial waves play an important role
in producing variations in mean zonal winds associated
with QBO. Observations by Hirota (1978) and theore-
tical studies by others (Holton and Lindzen 1972;
Dunkerton 1978: Holton and Lindzen 1968; Lindzen
1967: Lindzen 1970; Lindzen and Holton 1968 Lindzen
and Matsuno 1968) indicate that the westerly Kelvin
waves and the easterly mixed Rossby-gravity waves
are the prominent waves which generate biennial
periodicity. Kelvin waves transfer westerly momentum
upward thereby providing a source of westerly mo-
mentum for setting up of westerly regimes, while mixed
Rossby-gravity waves induce a mean meridional circu-
lation having strong horizontal heating, which through
the coriolis acceleration, produce an easterly accele-
ration. It may thus be seen that as a result of influence
of Kelvin waves and the mixed Rossby-gravity waves,

*This work has been carried out under the research project sponsored by the Dept. of Science and Technology, Govt. of India.
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tAssociated with the wind oscillation, there is a temperature oscillation that has an amplitude of the order of 3°Cat 25 km. As in
the case of wind oscillation the phase of the temperature oscillation is maximum at the highest levels and progresses downwards. Because
the temperature oscillation isconsiderably small, itsstructure is known in less detail.

{The easterlies are slightly stronger than the westerlies so that the zonal wind averaged over an entire period is from the east.
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Fig. 2. Zonal profile generated by the interacting Kelvin wave

there is an oscillation in the mean zonal flow, but the
alteration from a westerly to an easterly regime has
not been well explained.

Thus, any theoretical model to explain QBO should
be able to delineate the following characteristic features :

(/) Approximate biennial periodicity,
(ii) Zonal symmetry about equator and

(iii) Downward propagation without loss of ampli-
tude.

As stated above, the earlier studies suggest that the
QBO is primarily driven by Kelvin and mixed Rossby-
gravity waves but, as far as we are aware, no theoretical
study provides adequate information on the mecha-
nism which could explain the near regularity of QBO.

Here, we would confine our attention to the genesis
of the westerly component and the periodicity of the
QBO. We visualise that the winds in the stratospheric
atmosphere are essentially easterlies in character,
and the westerly regime is established with a periodicity
of 26 months as a result of the self-interaction of Kelvin
waves. The change-over to the easterly regime is trig-
gered by the self-interaction of the mixed Rossby-
gravity waves.

2. Dynamic model

We consider a divergent barotropic model for studying
the interaction between atmospheric waves. We consi-
der a shallow layer of constant depth (Fig. 1) H (=20 km)

in which the fluid is assumed to be inviscid, incompresi-
ble and of homogeneous density p. Deformations A
of the free surface are assumed to be sufficiently small
so that free surface variations can be necglected, when
horizontal divergence is incorporated into the model.
The important dynamic effects of the earth’s rotation
and sphericity are taken into account by introducing
the coriolis force vector :

22 (wcosg—v sin ¢, usin ¢ —u cosd)

in the equations of motion. A cartesian coordinate
system (O, XYZ) is used and the components of the
vector are, respectively, in the zonal direction (X),
meridional direction (¥) and the Z direction (which is
antiparallel to the gravity vector). £ is the earth’s
angular speed, ¢ the latitude and (u, v, w) are the com-
ponents of velocity along OX, OY and OZ,

In this local frame of reference, the equations of
motion and of the mass conservation can be written in
the form :

Uy = Uity - Vi -+ wu—2 Qvsing 4+ 2Qwcos ¢ = _Pl Ps

(1a)

Vg - UV o WYy o WY, - 2Qusing = — .}), Py (1b)
W - uwz - YWy - ww; — 204 c0s ¢ = —g— l— Pz

(Ic)

Uy +vy+wy=0 (1d)

where p is the dynamical pressure and g is the accele-
ration due to gravity. The latitude ¢ can be expressed
in terms of the meridional coordinate by approximating
202 sin ¢ by

204=22 ¥ —py @)

where 8 = 2Q/a (where ais the earth’s radius ~ 6.37 X
10 m) is the Rossby parameter. The approximation is
valid because we are confining our attention to the
equatorial atmosphere. Likewise

COS ¢~ | (3)

The magnitudes are : £ = .7292 x 107457,
B= -+ 2.2894 x 107" m—* s71).

3. Scale analysis

Notice that c¢=(gH)"* represents the speed of the
shallow water gravity waves. Taking H=20x10* m,
g=10 ms™2, we find that ¢ ~ 4.47210* m/s, but as
we are interested in the slower moving systems, we
introduce the characteristic velocity U~10 m/s which
is the typical speed corresponding to the phase speed
of the westward moving Rossby waves. The charac-
teristic features of the physical model are incorporated

by referring the horizonta‘!ﬁlgpglh scale to L = 4/(¢/p)
and the time to T=1/4/(Bc). Accordingly, we get

L~108 m and T~2.745 hours. (4)
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The characteristic vertical speed W is obtained from the
continuity equation 1 (d) :

H —2
W~U—L ~ 10~* m/s.
At this stage, it would be appropriate to examine
the relative magnitude of the coriolis terms in 1 (a) :

|2Qwcosgp| <<[|22vsing|

In view of this condition, 2Qw cos ¢ is, traditionally,
dropped in meteorological studies. However, at the
equator, 2 Qv sin ¢ vanishes and if the effect of earth’s
rotation is to be taken into account, the term 22w
cos ¢ cannot be ignored in 1(a) for studiesin the equa-
torial atmosphere. This implies (from the energy
balance principle) that the term 2Q u cos ¢ will also have
to be retained in 1(c). From this analysis it follows
that the so-called “hydrostatic approximation” would
no longer be valid in such a situation. Let us, therefore,
examine the z-component of the momentum Eqn.
I(c) first. The instantaneous acceleration term, con-
vective terms, coriolis term, pressure gradient term
and the carth’s gravitational terms in 1(c) are, respec-
tively, of the order :

W|T (~ 10—*), UW/L~W*H (~ 1077,
2 Q U(~ 1072), (Ap)serticat [ pH (~10) and g(~10).

It follows that in the tropical atmosphere, 1(c) reduces
to

1 op_ 5
=5 = g+2Ru (5)

Since z= H-}-h is a free surface along which pressure will
be constant, we have (see Fig.1) :

0 = (8p) =P 54 Py
0Z

z=H~+h ol

where 8! represents variation in the horizontal direc-
tion.

1t follows that

w __ o
ox 6z ox
and
o _ _ o 0z
ay 0z oy
@ _ 1\ e ap_ oh
T p X p ox oz ax[ g+2.(2u]
i -—14%9"]
ox '
Similarly,

oy g
where ¢ = gh is the geopotential whose characteristic
scale is ¢U. In non-dimensional form, 1(a) and (b)
accordingly, become

_ 1 @ _ 8¢ '___1 o 28u
p oy ' i

2
a
U + e[uu_, + vuy + wu:]—vy—::— W=

= ¢z [ -1+ a’u] (6a)

v+ e[ uvy + vy A+ wi] + wy =
= ¢y [—140*u] (6b)

where,

= Lowor(=uvpL) O

which can be interpreted as the equatorial equivalent
of the conventional Rossby number and

o = 2'2” ~ 20 ~ 10— ®)

which represents the extent of the non-hydrostaticity of
the equatorial atmosphere. Notice that this parameter
essentially depends directly on the earth’s rotation.

We now integrate the non-dimensional form of the
continuity equation which yields

1+ed
w + SO (u, + Vy) dz = 0 9)
(Notice that the upper limit z=H--/: becomes 1 -|- ;—; in
dimensionless form which is equal to 1 ch: b =1 ed);

dh ! ; ; .
"~ can be written in the non-dimensional

Since w = Jt
form as w =g+ U+ veéy), we have, from
Eqn. (9) :

bt (et )+ 5 Pt n) dz =0 O9)

The model chosen here would incorporate the special
featutres of the QBO like the periodicity and the deve-
lopment of the westerly regime due to the interaction
of the waves in the equatorial atmosphere in the stra-
tosphere. Other characteristic features like the vertical
propagation of atmospheric waves and upward transfer
of momentum due to their interaction cannot be exhi-
bited by this single layer model. Likewise, establish-
ment of the easterly regime due to the interaction of
Rossby-gravity waves (which induces a mean meridional
circulation having strong horizontal heating) cannot be
accounted for by this barotropic model. In our subse-
quent study, it is proposed to incorporate these special
features as well as by a two-level baroclinic model.
The model chosen here is well suited for determining
the dynamics of the interacting atmospheric waves
in the monsoon region.

The nonlinearity of the system implies that the
superposition of the waves is not valid. Instead the
vorticity of one wave is advected by the velocity of the
other and the waves are entrapped by nonlinearity to
interact with one another for the energy exchange
among themselves.

It may be seen that the zeroth order approximation
(obtained by letting e, o* and a®/e—0) contains the
important equatorial waves — Kelvin, mixed Rossby-
gravity, Rossby and eastward and westward propa-
gating inertia-gravity waves.

The problem posed above corresponds to the large
cumulative effects represented by the nonlinear advec-
tive terms and other small perturbation terms. A




370 M. P. SINGH et al.

uniformly valid asymptotic solution of the system can
be found by introducing slow variables to avoid the
secular terms. At this stage, it would be appropriate
to write:

€e=ao (10)
where a = 0 (1).

The relevant long scales representing slow changes of
the system in this study are :

Xi=0x, Xo=0"x,

Tl'-:-O'F, T_g-:agf, (Ila)
Accordingly,
9 .0 4.0 ot 0
ox ox ). ¢ X5
d 0 0 |, . @
<7 — =0 — + 0° - = 11b
cl ot T, a7, ( )

Before we proceed further with the mathematical ana-
lysis, it would be interesting to physically identify the
various time scales in terms of the meteorogical pro-
cesses.

Notice that T~10* seconds (~3 hours) which corres-
ponds to meso-scale (applicable to processes of thunder-
storms, cumulus thunder, lake breeze, sea breeze etc).
The long scale T,( = ot) has the characteristic
time scale ~ 9 days which is synoptic in character
and is applicable to large scale meteorological processes-
Rossby waves, monsoon depressions, cyclones etc.
T,(=0¢"1) is of the order of 26 months which
corresponds to the period of QBO that are of significance
in the study of Kelvin and mixed Rossby-gravity waves.

4. Analysis

We now set up perturbation expansion of the form :

u(@) =uwy--ouy +ofug .. ... .. (12)

and similar expansions for v and ¢, where w; Vi, &t
i=0,1,2,....depend onthe space and time variables
(short as well as long scales). Since ¢ is independent of
z, it follows from (6a) and (6b) that each successive term
Ug, Uy, Uss - - - 3 Vos Vys Vay. . O the perturbation expansions
will be independent of =. This implies that » and v as
well as ¢ depend only on x, y, £, X1, Ty, Xy, Ty o v o
etc. Hence Eqns. (6) reduce to the following form :

‘ a "
Uy - a0 (W + Vilg) — YV - - W = b (—1 - o*u)

Ve ao (uvy 4y +yu = dy(—1 4 o)

e -+ ao (ud; + 1'5”;;') +(l +agd Wity +vy) =10 (13)

Substituting (11 b) and (12) in the above system ol
equations, the problems of different orders are given

by :

o(l) :
uo'i—y"0+¢0sz'= 0

Vos t - Wiy - ‘160;,:) =10
P05t - Up, » -+ Yo,y =0 (14)
0(o) :

. 1
Uy, g — Yy _}_ éln: = —Upy 1 — .Cﬁ- ‘#‘0‘! -

= posxs — @(Up Ugsy | V0 Vo )

Visg =i iy -t ‘f':’y = —Vyry —u(ligVy,; -| "u"o,y)
961,! A Upag Vi = — Uo,x) —pos7s —
—a [(u(,qbu)_r | ("Ufflu)y] (15)
O(c®) :
Ust — YVs + oy = — Uy — Upypry —
l .
_ ‘—a (‘#m I 1131)#1"1)
— Voo — brox1 — Posxs — @ [ (voy), - totto,xy -1
= Voltyay -1 Villg,y ]
Vast == My =1 @auy — — Vispy — Vayps — Uoosy

—afuyVyye == Vo, x1 + 100 - (V1Y0)y]
bast - Uzep + Viny = Upsxy — U0y X2 — Prri— Pos72
—a[(tBo)y -+ (Hoboyxs -+ (Hodr)z + (Vido)y < (Vods)y]
(16)
The solution of 0 (1) problem is given by [Matsuno
1966]
U, = —l LA%-,E) Ynis—+ n()l—k)gbn_l](A e A*e0)

Vo = 1A — k*) iy (Ae™d — A*e—it)

A—-Kk) i
P = — [ : 5 Putr — MA—K)thn_, jX
X (Ae'® 4 A%e0) 17
where,
N P e= kA =20 - 1, 0 = hx — AL,
A == 4-"1 ( X!, T].",‘I.! T: vans ), lﬁu = Ii?l(y) {,‘—!"2’3
H, being the Hermite polynomial of order n.
For Kelvin wave solution, n=—I1 and A=k=k,
Hence, from (17) we lind that
uy = ¢o = el (Ae"_? - A¥eT i), vo=0 (13)

where 6y = ko (x—t).
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5. 0 (o) solution
Eliminating u,, and ¢, from Eqns. (15) we obtain

L) =Vt 1szarHY Vir—Vaspye— V152 = —Vours
= Vospzp, -+ U0z —@ouytr, —UpayT, — PdyX1

+-y(—to,2x, — P0sar, T+ Uetr, -

+ ¢, 1x1) +—la_ (—dosmyt -+ Vo)

Faf—(UgVpz + Vool - (UoVosz + VoVosy)zx
—M(uopodzz -+ (Vododzp - (Hotlosz)e -+ (Vettosy)]
+(ttobo)eyt + (Vopo)yyt — (Uotor)zy — (Volkow)zy}  (19)

Letting v,=v () € the left side of (19) becomes

L) = Q) + [W——kN)—yT ()} et (20)

Substituting (17) in the right side of (19), the linear
terms reduce to

(AN kN (A, el0—-A%) i)
+ l(l + ZM) 't['u(AX: em—AtXL c_ia) -+

+ g‘[kﬂbu—!—z + (MW —n(n — Dpn_n ] X

% (Aeif L A*e™ 1)} (21)

The contribution of the nonlinear terms of the right
side of (19) is given in Appendix 1. An examination
of (21) shows that the forced modes are in resonance
with the natural modes of the system and sl}oul(_i there-
fore be avoided on physical grounds. This implies that
the only acceptable solution would correspond to
A=k (A = —k gives a divergent solution) andn = — 1.
That is, in the nonhydrostatic barotropic cguatorlal
atmosphere, only the self-interaction of Kelvin waves
is possible. We accordingly obtain :

(] - 2y i "-_—“*_Gdk de""‘y! b
[#=—(14+7") %j’e:"f’o-— Auﬁ,—smu) 22)

whose solution is discussed in Appendix 2.

As we are primarily interested in determining the
zonal flow arising due to the interaction among af-
mospheric waves, the non-oscillatory components des-
cribed below would be of fundamental interest for our
present study.

0 ( o) non-oscillatory part :

yih+$uy=0 (232)
0 ( o*) non-oscillatory part :
¥ =+ m+ Foxi+al A (uotiox) -+

+ A (V1tio.y)] (23b)
—Pey="nx+ q?wh +al A (o do)x: +
4+ A (Vigody] (23¢)

where /\ denotes the nonoscillatory part of the quantity.
Eqns. (23) form a coupled system for the unknowns
2. it1, &1 to yield zonal flow on temporal and spatial
scales.

There arise two special cases corresponding to the
amplitudes of the interacting waves being (I) inde-
pendent of the planetary length scales X1, X,, ....and
(2) independent of the temporal scales Ty, 15, .. ..

6. Results

6.1. Case study 1

When the waves remain discrete all along, i.e., their
amplitudes depend only on the tamporal scales T,, T,
...... , the zonal Eqns. (23) reduce to

L£1(F) = Yoy — VT2 = a)y(8y* —9) e X
|Al* (A—A4*), : (24)

The operator [, is a special case of the operator
[(@*/dy*) + (2n --- 1—y* )] which is known to exhibit
unrealistic divergent solution for non-integral values
of n. Hence, Eqn. (24) does not provide any
realistic solution for /';. Thus locai features of inter-
actions among the Kelvin waves of discrete spectrum,
having amplitudes independent of the planetary length
scales X, X:,....do not generate any zonal current
on long time scales 13, 7%, ... This confirms one of the
conclusions of Loesch (1977) about the incapability
of the interacting atmospheric waves of exciting any
zonal flow on temporal scales Ty, 7. . ...

6.2. Case study 2

The continuity of wave spectra and invariance
of amplitudes of the interacting waves on the temporal
scales Ty, T,...., lead to the simplification of Eqns.
(23) to the form :

P = ‘ﬁ?l.n + e[ Aoux, )+ AW u,,,y)]

25(a)
—a, y = ;;"l!x" + @ [ A (uo do )Xl + A (o )y]
25(b)

where wuy, ¢o are the Kelvin wave solutions given by
(18) and v, is the solution of (22). Differentiating 25(a)
with respect to y and substituting 25(b) for v,y we
get

$r = ae ¥ [| A0,0) [ — |AXy, X5)*]

#1=2ae?[|A0,0)|* — |A(X:, X)) (26)

which shows how energy is transferred from the inter-
acting Kelvin waves for the generation of the zonal
flow (Fig. 2).

The study shows that the non-hydrostatic condition
imposes the restriction that out of all the important
atmospheric waves in the equatorial region, only the
self-interaction of Kelvin waves is possible and the
remaining waves give rise to resonance of the forced
modes with the natural modes and, therefore, should
be avoided on physical grounds. Evidently, baro-
clinicity of the equatorial atmosphere would account
for the interaction, if any, of other atmospheric waves
in the monsoon region. It is shown that the Kelvin
wave triads cannot be in resonant interaction to excite
the zonal flow and that the self-interaction of Kelvin
waves consequent to their entrapping by convective
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non-linearities on planetary scale to the transfer of
energy for the generation of the westerlies. The charac-
teristic scale of this self-resonance corresponds to the
periodicity of the QBO.

As consideration of easterly regime induced by the
mixed Rossby-gravity modes needs inclusion of tempera-
ture effect, the above study would not be appropriate
from the point of view of this aspect.

The self-resonance provides excitation of westerly
zonal flow, i.e., Kelvin modes transfer westerly mo-
mentum which has also been indicated by earlier in-
vestigators (Holton and Lindzen 1972). The interesting
point of the study is that the maximum transfer would
take place during resonance. This self-resonance has
a period of T/e* which corresponds to a time scale
of 26 months which is the periodicity of the QBO.

The significant conclusions from this study are that
the self-interaction of the equatorial Kelvin waves
accounts for the excitation of the zonal westerlies and
the period of intense excitation is of the order of 26
months which is the period of the QBO.

Two interesting points are noteworthy in this con-
nection : (i) the non-hydrostaticity of the atmosphere
has been shown to be linked with the periodicity of the
QBO. Since the non-hydrostaticity of the atmosphere
and the QBO are the characteristic features of the
equatorial atmosphere, this correlation, although sur-
prising, is understandable; (i) the periodicity of the
QBO is known to be approximately 26 months. Here, the
26-month periodicity arises due to the resonance
occurring at 0 (e?). The corresponding time scale is :

p—t g—t H—

T
a’ 20

where the non-hydrostaticity parameter o® of the equa-
torial atmosphere essentially depends on the earth’s
rotation alone, and the characteristic time scale T

(which is of the meso-scale order) = ;. The

1
pgt H
periodicity of the QBO will, therefore, depend on
the depth H of the atmosphere above the earth’s surface
in the equatorial stratosphere. The following table
gives the period of the QBO vs H.

Depth of the atmosphere Period of the QBO

H (km) T/e* (months)
15 28
20 26
25 24
30 23

This is, in accordance with the observational data
according to which the periodicity of the QBO is known
to vary with the depth of the atmosphere from 22
months to 30 months or so (Newell et al. 1974).

The other characteristic features like vertical trans-
portation of the momentum as observed by (Reed and
Rogers 1961, Varyand and Ebdon 1961) etc and the
development of the easterly component of the QBO,
cannot be explained, as pointed out earlier, by this
single layer barotropic model. Our subsequent study
would throw light on these aspects of the QBO.

Acknowledgement

The authors thank Dr. P. K. Das for useful discus-
sions. This work has been carried out under the DST
sponsored project.

References

Dunkerton, T., 1978, On the role of the Kelvin waves in the wes-
terly phase of the semiannual zonal wind oscillation, J. atmos.
Sci., 35, 32-41.

Hirota, I., 1978, Equatorial waves in the upper stratosphere and
mesosphere in relation to the semiannual oscillation of
the zonal wind, J. armos. Sci., 35, 714-722.

Holton, J.R., 1979, An introduction to dynamic meteorology, Acade-
mic Press. N.Y.

Holton, 1.R. and Lindzen, R.S., 1968, A note on ‘Kelvin® waves
in the atmosphere, Mon. Weath. Rev., 96, 385-386.

Holton, J.R. and Lindzen, R.S., 1972, An updated theory for
the quasi-biennial cycle of theltropical stratosphere, J. atmos.
Sci., 29, 1076-1080.

Lindzen, R.S., 1967, Planetary waves on beta-planes, Mon. Weath .
Rev., 95, 441-451.

Lindzen, R.S., 1970, Vertical momentum transport by large-scale
disturbances of the equatorial lower stratosphere, J. mel.
Soc. Japan., 48, 81-83,

Lindzen, R.S. and Holton, J.R., 1968, A theory of the quasi-
biennial oscillation, J. atmos. Sci., 25, 1095-1107.

Lindzen, R.S. and Matsuno, T., 1968, On the nature of large-
scale wave disturbances in the equatorial lower stratosphere,
J. met. Soc. Japan, 46, 215-221.

Matsuno, T., 1966, Quasi-geostropic motions in the equatorial
area, J. met. Soc. Japan, 44, 25-43.

Newell, R.E., Kidson, J.W., Vincent, D.G. and Boer, G.J., 1974,
The general circulation of the tropical atmosphere and interac-
tions with equatorial latitudes, Vol 11, MIT Press. Cambridge,

USA.

Reed, R.J., Campbell, W.1., Rasmusson, L.A. and Rogers, D.C.,
1961, Fvidence of the downward propagating annuzl wind
reversal in the equatorial stratosphere, J. geophys. Res.,
66, 813-818.

Varyand, R.G. and Ebdon, R.A., 1961, Fluctuations in tropical
stratosphere winds, Mer. Mag., 90, 125-143.




EQUATORIAL ATMOSPHERE & QUASI-BIENNIAL OSCILLATION 373
Appendix 1

The non-linear inhomogeneous terms of (19) are given by

{[(A ) (A —k) (A 4 26° + 3Nk -3) o+ 2K 4k —sn)

G L L

-+ (A2—k?) L4kn (A—k) (A*—K*) (1—A—k)—

(1) (A _g- A k--k8)n® (A—k ) (A--3k ) —

—nk (/\ -L ’\) -+ i (l\ —k — 1“"‘) (JA——‘“L )}] ‘)&w l!(’n—l

4+ | —(A—k*) (A A)@——k) mk (A+k )’] Yat1 Pata

+ | —2m2(n—1) (A—k) {(A2—k?) (4A—k) + Nk A — k) } ] Yus Yo

- L 2 (A=) (2A°—K*®) - 4Ak ] Yna Yuta

+ |n(n—1) k’(r\’—.'c’)] Yntr Pn2

(A+L)2 ]

= § =M= ) Yu Yuts

+ [2:! (n—1) (1—2) (A—k)* (A*—k?) ] Py Pus }(A’e“"-—A*’ e tif) (Al)
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Appendix 2

Solution of the equation

Vi— (14 p* )y = ye¥? (B1)
With the boundary conditions
v(ZFo)=0. (B2)

The solution of the homogeneous equation
Vi—({14+3*)v=0 (B3)
is sought in series form as follows :

@&
v=y X
k=0

8hayr "IF’,' y 8oy r = 0 (B"H

putting (B 3) in Frobenins from, substituting (B 4)
for v and equating the coefficients of y* on both sides
of the identity we get r=0, 1, and

Gy o (8f—2.r " Sjea.r) . sl
=l P | (r /\] “. P‘ l) SRl

k=24, (B5)

where,

8x—t r =0 for k<rand gy , =1,

The two linearly independent solution of (B 3) are
then given by

e A
Po= T g ¥ vi= 2 guua YT (B6)

Particular solution of (B 1)

Let r,.:(?(y)e_é‘2 be a particular solution of (B 1). Then
G(y) satisfies the equation

GC')—H @Y +30-DGY) =y (B7)

ax
Let G= 2 A; y* bea particular solution of (B 7). Then
k=0

substituting the above expression in (B 7), the coefli-
cient A; are found to be

Ag=A,=A,—0, A,=1/6,
l4},\—5] Aka—SAA.__,;

k(k—1) ’
"’rf;‘1 = (). k— 5‘ 7, Q, ...... (Bg)

A=

The complete solution of (B 1) is then given by
V=colp -+ ¥y -V (B9)

where ¢g, o, are arbitrary constants. Utilising the
boundary condition (B 2) we find that

co=0and ¢, = lim — vy (p)/v,(¥), (B10)
s

so that

V=0V Yy (B11)




