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ABSTRACT. A numerical procedure is illustrated for computing stream function and velocity
potential fields from the vorticity and divergence of the horizontal wind field. A mixed type of boundary
condition is suggested in the present work. The computations are performed with a number of existing
methods and the method proposed in this study, on a spherical grid over the tropical belt (3.75N-30N
and 45E-105E) with observed wind ficld as basic input.

Horizontal wind fields are reconstructed from the computed fields of stream function and velocity
potential and compared with the observed wind field. The results of both qualitative and quantitative
intercomparison among the various methods show that the reconstructed total wind obtained by the

method suggested in the present study is the best representation of the original observed wind.

1. Introduction

Importance of stream function field calculated from
the horizontal wind field can hardly be over emphasized
(Bedient and Vederman 1964, Shukla and Saha 1974,
Mohanty 1978). It is widely accepted that in the low
latitudes the wind field is more reliable than the geopo-
tential field for various diagnostic and prognostic studies,
related to tropical weather systems (Yanai and Nitta
1967; Gorden et al. 1972). The stream function ¢ and
velocity potential X which resolve the observed wind
field into its non-divergent and irrotational parts are
now widely used for diagnostic (Krishnamurthy and
Ramanathan 1980, Sumi and Murakami 1981) and
prognostic (Vanderman 1962; Sikka 1975; Kivganov and
Mohanty 1979) studies. Further, in global spectral
models the scalar ¢ and X fields are preferred to the
vector wind field to avoid the problems related to
singular points. The present scheme is developed for
its use in diagnostic studies which require analysis
based on wind observations and also for the reconstruc-
tion of balanced fields of wind and geopotential height,
used in numerical simulation and prediction problems
as initial data. The main objective of this study is to
compute more reliable non-divergent stream function
and irrotational velocity potential fields which can

represent accurately the observed wind field as the
outcome of all meteorological studies are sensitive
to initial data sets.

The basic problem of computation of stream function
¥ and velocity potential X lies in solving the following
equations, derived from Helmholtz theorem :

Vu'X=VuVug=D (n
Vay=k.Vr X Vg={ 2)
where,

V5 — horizontal wind vector,
k — unit vector normal to the earth’s surface,

%/ g — horizontal gradient operator,
D —divergence of horizontal wind and
{—vertical component of vorticity.

For a limited domain, the main problem in solving
these Poisson’s partial differential equations is to specify
the values of ¢ and X at the boundary points.
A number of recent studies have been concerned with
numerical computation of ¢ and X fields from the
wind field and also with the specification of suitable
boundary conditions (Phillips 1958, Sangster 1960,
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Brown and Neilon 1961, Bedient and Vederman 1964,
Hawkins and Rosenthal 1965, Tangri 1966, Mancuso
1967, Yania and Nitta 1967, Shukla and Saha 1974,
Kivganov and Mohanty 1978). Since no information
of the values of ¢ and X at the boundary points is
available from the physics of the problem (Miyakoda
1962), it is difficult to arrive at a definite conclusion
on perfect boundary conditions in spite of these large
number of studies. In general, three types of boundary
conditions are used for the solution of Poisson equa-
tions, namely, Dirichlet’s conditions, Neumann’s condi-
tions and mixed boundary conditions. Though ¢ and
X have no physical significance of their own, the gradient
of these scalar fields represent the wind components
and, therefore, the following boundary conditons are
widely in use :

n.Vg=V,=n.(kX Vg ¢+ VnX)
N j‘ ~:—§ff (3)
s. Vg =V, =s. kX Vu¢ + VuX)
_ 84 X 4
on " as
where,

n—unit vector normal to the boundary and
directed outward.

s —unit vector along the boundary, reckoned
positive in the counter-clockwise direction.

Root mean square vector error between the observed
wind field and the derived wind fields from 4 and X is
used by various authors (Hawkins and Rosenthal
1965, Bedient and Vederman 1964, Shukla and Saha
1974) as a criterion of determining the goodness of a
particular method. In any case if closeness of the derived
winds to the observed wind field is the main requirement ;
besides above quantitative estimate, qualitative com-
parison of these two analysed fields which provide
spatial characteristics of the flow pattern should also
be given due weightage.

This paper describes a numerical iterative procedure
for solving Eqns. (1) and (2) with a new method of speci-
fying the boundary conditions. This scheme is so desig-
ned that it allows the boundary values of ¢ and X the
freedom to vary with and adjust to the interior grid
point values at each iteration. The results of this new
method are compared with those of some of the existing
schemes and it is found that the root mean square vector
errors between the observed and the reconstructed total
and non-divergent wind fields are minimum in the
present scheme.

2. Review of earlier works

Shukla and Saha (1974) and Mohanty (1978) gave
a detail review of the earlier works on the computation
of ¥ and X from horizontal wind field. For the sake of
completeness, we will describe only those methods
which are considered in this study for the purpose of
comparison.

One of the approaches for solving the Poisson Eqn.
(2) for ¢ is to prescribe a value of ¢ at the boundary
and keep it constant during the process of iteration.

Such type of boundary conditions are of first kind
and are known as Dirichlet type of boundary condi-
tions. The simplest one is to solve Eqn. (2) with boundary
value of  as zero (Tangri 1966). Now onwards this
approach will be referred to as method L.

Another approach of Dirichlet type is to obtain
value at the boundary by using the observed values
of ¥, and integrating the equation :

L, . 3 ®)
This type of approach is used by Phillips (1958), Brown
and Neilon (1961), Bedient and Vederman (1964),
Sumi and Murakami (1981) and others. The integra-
tion of Eqn. (5) over a closed domain gives rise to two
different values (starting point and end point values)
of yat the same point. In order to avoid this discre-
pancy in integration the difference is distributed uni-
formly among all the boundary points. This technique
will be referred to as method II.

Sangster (1960) suggested for the first time a scheme
which takes into account the effect of irrotational velo-
city potential component in deriving non-divergent
stream function at the boundary. In this scheme first
Eqn. (1) was solved for X with X' = 0 at the boundary.
Subsequently ¢ at the boundary was derived by using
Eqn. (3) and derived X field. These boundary values
of ¢ were kept constant during the process of solving
Eqn. (2) for at the interior points. This scheme was
extensively used by Hawkins and Rosenthal (1965).
This method will, hereafter, be referred to as method-
101,

More recently Shukla and Saha (1974) proposed an
iterative scheme for computation of 4 and X which is
essentially an extension of the Sangster method. In
this approach the values of ¢ and X obtained in the
Sangster method are taken only as the first approxi-
mation values at the end of first iteration and as i was
obtained at the boundary by integrating Eqn. (3) by
Sangster, similarly X" at the boundary was also obtained
by integrating Eqn. (4) along the boundary in the second
step of iteration using thei values of the previous step
and the new X field was computed by relaxing Eqn.(1).
With these new values of X, the i values at the boundary
were obtained using Eqn. (3) for solving Eqn. (2). This
completes second iteration to obtain new values of
and X. This procedure was repeated for a number of
times N for which the root mean square vector error
between the observed wind and reconstructed total
wind was minimum. It was found by these authors
that a value of N=4 satisfied this criterion. This ap-
proach will, hercafter be referred to as method IV.
It may be noted that method 1V with N=1 corresponds
to method III.

3. Proposed method of computation of 4 and x 4

The method described in the present study is based
on the idea of Sangster (1960) to satisfy the Eqns. (3)
and (4) at the boundaries. However, the type of boundary
conditions and the numerical technique followed in
the present method are quite different from that of the
Sangster method and the method of Shukla and Saha
(1974), the latter being essentially an extention of
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the former. In solving Eqns. (1) and (2) Sangster (1960)
and Shukla and Saha (1974) have chosen Dirichlet type
of boundary conditions. In the present method, an
attempt has been made to use Neumann's boundary
condition in solving Poisson’s Eqns. (1) and (2) which
allows the boundary values of stream functions and
velocity potentials the freedom to vary with and to
adjust to changing interior grid points values during
the process of iterative convergence of the scheme.
However like the approach of Shukla and Saha (1974),
at the first stage in order to obtain the X field, Sangster’s
approach is adopted, i.e., Eqn. (1) is solved with X= 0
at the boundary points (Dirichlet’s boundary condi-
tion). After the evaluation of 9X/on from the calgulated
values of X, ¢ is obtained at the boundary points by
integrating Eqn. (3). The solution of a Poisson par-
tial differential equation for ¢ with normal derivative
boundary conditions leads to :

—a,dif;—=(?(x,y) ()

where G(x, y) is an unknown function of the horizontal
coordinates.

As shown by Miyakoda (1962), in this case, Eqn.
(6) should agree with the Eqn. (2), i.e., should satisfy
the Stoke’s theorem, i.e.,

II Ldxdy = _”. Vigdxdy =¢ ._g"ﬂ di

or [[taxav=6G@ya ™

From Eqns. (7) and (4), we have :
for east and west boundaries,

1 oy 1 X
acosd A | a a9 @
and for north and south boundaries,
Loy __,, 1 X
oW '[ acos¢ oA ®)

Similarly for the solution of Eqn. (1), we have the follow-
ing boundary conditions :

for east and west boundaries,

1 X 1 o¢ 1
L=y — L 0
acos ¢ oA L a ¢ (19
and for north and south boundaries,
1 X PO kel
@ 3 = i acos ¢ 2A an

where A¢ and AA : latitudinal and longitudinal grid
increments on a spherical domain respectively,

a :radius of earth and
¢ : latitude.

This implies that the gradient of stream function normal
to the boundary is specified by the non-divergent
wind component tangent to the boundary. And the
gradient of velocity potential normal to the boundary
is given by irrotational wind component normal to
the boundary.

These new i values at the boundary and the boundary
conditions (8) and (9) may be used for solving the Eqn.
(2) to get a new distribution of i field over the entire
domain. This completes the first step to obtain  and
X fields. In the next step, if desired, the previously
obtained values of v are used to evaluate g¢/on and
new boundary values of X are obtained from the Eqn.
(4). At this second step instead of Dirichlet’s condi-
tions normal derivative boundary conditions (10) and
(11) are used to obtain X field by iterative solution
of Egn. (1) in a manner similar to that used for .
The new values of X may be used then to evaluate
2X/én in Eqn. (3) which may be integrated again to
obtain new i values at the boundary. These values
of 4 at the boundary may be further used to obtain
new values of ¢ over the entire domain by a procedure
similar to the first step. Thus we get new values of ¢
and X in the second iteration. A number of such itera-
tive steps may be performed to get values of 4 and X.
An attempt is made to compute the root mean square
vector error {r.m.s.v.e.) between the wind fields recons-
tructed from the ¢ and X fields and the original wind
field at each step so as to find optimum number’of itera-
tive steps (N) for which the r. m. s, v. e. is minimum.
Such an iterative scheme was followed by Shukla and
Saha (1974). However, in our computations both
with the present scheme and the method of Shukla
and Saha, the optimum number (N) of iterative steps
is not constant and varies between 1 & 5. The
present method will, hereafter, be referred to as
method V.

4. Numerical solution

Computations are performed over a spherical grid.
In a spherical coordinate system the position of a particle
may be given in terms of latitude 4, longitude A and
radial distance r from the earth’s centre. It is assumed
that r=constant=a, where a=radius of earth. In such
a system of coordinates, the expressions for divergence,
vorticity and Laplacian operator ¥7® are given as :

1 1 v
Vg Vam——or X ?

v
acosé oA ' a _{'-)Z_?tan‘f’ (12)

1 av 1 ou

- L W
k. Vg X Vg= acnd 915 a¢+ o tan 0 (13)
_ 1 2 1 2° tang 3
Ve = a*cos® ¢ W'i'? Er S Y (14)

where # and v are components of Vj along M-axis
and ¢-axis. In the present study, constant grid spacing
of AA= A¢$=1.875" has been used. Centred space
finite difference scheme is used for calculation of diver-
gence and vorticity. The Laplacian is expressed in
S-point finite difference form.

In a regular latitude longitude spherical grid

(AA= A ¢ = constant), if we define :
DX = acos¢ AA (15)
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then DX will be a function of latitude ¢ and will be
equal to DY only at the equator.

Using Eqns. (12) to (16); the Eqns. (1) and (2) can
be represented in the following finite difference forms :

X(I+1L0) + XU —=1LD—2X(LJ)
DX (J) x DX (J) v

XWLJ+ D) EX(LI—1)—2X (1)) _

T T Dy xby
LX(LJ 4 D—X (LI=1)
- 0K DY xa ~— Enré())

wd -1,0)—uI—1.7) | v(LI+)—v (L1

20xDY

=T 2.0xDX(J)

v(1,J)
=ES

tand (J) (17)

and
Py 4+ 1, )+ —1,) =24 (LJ)

DX(J)x DX()
LT D () =20

DY » DY
[$(LJ -+ — oL J—D]
—— T 20xDYxa an p 1)

v(d 41, —vd—1J) [l ]+ D)=L J=1]
qv T 20X DY

- 2:0x DX())

| ”(—L’ D tané () (18)

As discussed in section 3, in order to solve these Poisson
equations at the boundary points, normal derivative
boundary conditions (3) and (4) are used to eliminate
the unknowns outside the domain. In the numerical
approximation of the boundary conditions (8)-(11) for
the four boundaries, the gradients are always taken

outwards from the boundary.

In order to obtain i at the boundary points, the
modified version of the partial differential Poisson
Eqn. (18) with the help of normal derivative boundary
conditions, (8) and (9) for the four boundaries are

as follows:
for west boundary (/=1):
(2 D |, ¥, J+D+4(.J—1)
‘I’(ll J) = G(J)ﬁ)’j-_(j')']i = = (DY)? =

Y(1,J+1D— 1, =1} NE
—2 . 0xax DY tan ¢ ()
, w(l, J+1D—u(l, J—1) (1, N+v2J)|
G(‘”[""z.‘Ox DYy { 2.0xDX (N ~

X(1, )—xd, 1) _ ul.J)
- Y X DX ) . ' tan &(J) (19)

for cast boundary (J = M) :

. M-—l, J .
WM, J) = G(J)[[il'[.(ﬁX(jj T) "

ML TED ML 1)
(DY)?

(M, J+D—¢(M, 1) }

20xDY Xa tan rb(f)]+
M, J 4 D—u(M, J— .

" G(J)[ A [1])\ ;‘)(}{‘f_{_ ”l +-
LMD (M —1.0) (XM, D) — X(M, T — 1)}
2.0xDX (J) DY xDX(J)

- Nlt}{{;” tan ¢ (J) ] (20)

for south boundary (/=1) :

B WAL LD I —1,1)
L2Y— (I, 1) .
__{_‘Ii( DY '{'7( x ' tan (1) ] ]—
—F [r(I + 1L, D—v(I —1, 1) {u(l, 1) 4 u(L, 2}
20xDX() —  2.0xDy

L X D)—=X(I—1, 1) | u(lL 1)
S TODX()xDbY T a “‘MH”] (21)

and for north boundary (J=N):

e SEN=D) (-1, Ny (I—1, N)
s = FN |- i o - _ 2 s V)
wihd)=H [ (DY) [DX (N)J?
) ‘{w, N)—i(Z, N—1)

DY % a } tan MN)] o

ey [[EELM)U—1N) | alh, N)-HuT.N—-1)
- 2.0 DX(N) S OO —

4 HEN) g (N}] (22)

o éX(I, N)—X(F—1, N}}
a

T DX(N)xDY

Similarly for obtaining X, the modified versions of the
Poisson equation at the boundaries in the finite differ-
ence form can be expressed with the help of relations
(17), (10) and (11) as :

for west boundary (/=1):

_an [X @D XA I+ x(1, T—1)
X (1, 0) =G6e) [[DX(J)F"’ T DYxDY

_ (X, I +)—x(1,J—D)
{ 2.0x DY xa jtan '-?'*‘(J)] —

g ir_(_l,.{_.)izf(Z,J) (L, J+-D—v(1,J-1) |
G‘J)[ 2.04DX() © 2.0xpy "

WD, I—) _ (1,])

" DX(J)XDY = mﬂrﬁd)l (23)

+
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for east boundary (/I=M):

X(M—1,J) | X(M,J+-1)-+X(M, J—1)
x0,0=600 | (XOF o DYxDY

__{,y(_M,J EN—X(M, J- 4)} tan ¢ (J)] n

‘ 2.0xax DY
ulM,J)LuM—1,J)
‘ +ao|* ~2.0%DXU)
_ (M, d ) -E‘fﬂaii)} UM, ) — M=)
. T 2.0xDY ' DX(J)x DY
M) é (.I)] (24)
o

for south boundary (J=1):
XU, 1)=FIIX(1. 2) |, X{+1, )x(a—1,1)

DYR v [DX()T
(X(1, 2D—X({I, 1)} _
_ GEBAED) g
u(l--1, D—u(d—1,1) | v D, 2)
== ‘l 2.0 x DX(J) T 3.0 x DY
(L 3):((;»’)“’;}) }; ) ,}_ "_(f;_‘_’ tan & (1) ] (25)

and for north boundary (J=N) :

: X({I, N—1) | X(I+1, N)4-X(I—1, N)
Xl N) — FN[DY < DY + YE

[DX(N
(X, N}—X(I, N—1)}
DY xa tan ¢ (N )] -
u(l4-1, N)—u(I—1, N) _ (v(Z, N)--v(l, N-—1)|
—FN[ 2.0 x DX () | 20xDY |
P(f, N)—yp(I—1, N) v
== DX X DY o (L N) tan ¢ (N)] (26)
: _ Dx() xDX(l) X DY x DY
where, F1 = 56~ "D¥ x DY & DX() X DX(I)
£x — DX (N) X DX (N) x DY 3 DY
~ 2.0 x DY x DY + DX (N) X DX(N)
6y = DX U)X DXU) x DY X Dy

DY x DY + DX (J) x DX (J) X 2.0

To obtain ¢ field over the entire domain we have
to simultaneously solve a set of 5 Poisson partial dif-
ferential Eqns. (18)-(22) by an iterative scheme. And

’ similarly for obtaining X field the Eqns. (17) and (23)-
(26) are to be solved simultaneously.

The accelerated Liebmann relaxation technique is
used with an over relaxation coefficient equal to 0.7
as suggested by Miyakoda (1962) and Shukla and
Saha (1974).

In using such an iterative scheme, it is necessary to
provide a reasonable intitial approximation to the
solution. As the convergence capability of the iterative
method is sensitive to the initial approximation to the
solution, it is important to start the iterative solution
with a reasonably accurate initial guess for Y and X
fields. There are a number of ways to obtain the ini-
tial approximation for ¢ and X . In the present method

the actual wind fields are used to obtain initial value
for ¢ and X from the relations (3) and (4). In
the first step, the X field is determined for the interior
points by solving Eqn. (17) with X=0 as the initial
guess over the entire domain. While initial values of ¢
in all steps and X in the subsequent steps are obtained
using Eqns. (3) and (4) to step along from point to
point throughout the entire domain starting with
zero values at the first point. In the subsequent steps
the value at the starting point is also modified by linear
interpolation from the values at the surrounding 6
points.

5. Resuits

In order to evaluate the efficiency of the various
methods, both qualitative and quantitative intercom-
parisons were carried out. For the purpose of quali-
tative evaluation, isotach and streamline analyses
were carried out over the domain for the actual wind
field and the reconstructed wind fields from the ¢
and X fields obtained by the various methods. Stream
function isopleth analysis was also done in order to
compare the computed stream functions with stream-
line analysis of the actual wind. And as a measure of
the quantitative intercomparison, the following para-
meters were computed. :

(a) Root mean square vector error (r.m.s.v.e.)
between the actual wind and the reconstructed
non-divergent wind field (ry),

rj = 4/]14-2’[(:«.—”(»* +0a—rp)T @0

(b) Root mean square vector error between the
actual wind field and the reconstructed total
wind field ryy,

rjy = ;4 2lug—uyg) -+ (va—rgx)*] (28)

where u, and v, are the observed horizontal wind
components, u}, v are the non-divergent
horizontal wind components obtained from
the ¢ field and wjy, vgy are the total hori-
zontal wind components calculated by the
relations (3) and (4) from ¢ and X fields.
M =Total number of grid points considered
for verification.

The basic data for computation for ¢ and X fields
consists of observed wind components 1, and v, at
1.875° regular latitidue-longitude grid points ob-
tained from the FGGE level-Illp data archieves of
European Centre for Medium Range Weather Fore-
cast, U.K. The area of computation extends from 45°E
to 105°E and 3.75°N to 30°N. As 50 per cent of
this area is covered by data sparse oceanic region,
it is difficult to have a reliable wind fields at regular
grid points to undertake a comparative study. This
problem is overcome in the present study as FGGE
provided a unique data base for the first time, for
this region.

5.1. Quantitative intercomparison

In the present study data for 500 mb of 0000 GMT
on 1 December 1978 has been used for intercomparison
of the methods 1-V, described in the earlier sections,

The verification parameters ryand » y v computed
for the methods I-V are presented in Table 1. From
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Fig. 1. The stream lines and isotachs of the original wind
field at 500 mb for 0000 GMT, 1 December 1978
(isotachs in m/sec)

4 o § 4
N 60€ 75€ 30 05E
Fig. 2. The stream function fields at 500 mb for 0000 GMT

1 December 1978, computed by (a) method IV and (1),
method V (units 10°m?/sec)
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Fig. 3. The stream lines and isotachs of the reconstructed non-
divergent wind, obtained from the stream function fields,
computed by (a) method 1V and (b) method V (isotachs
in m/sec)

TABLE 1

Intercomparison among the results of computed reconstructed wind
field from ¢ and X by different methods

Method
— - .

Verification 1 11 111 1w A"

parameter =t
N=1 N=3 N=I

.

¥ 11.33 2.83 2.30 2.30 3.49 2.02
r-,bX 8.54 2.64 1.59 1.59 1.38 1.17

TABLE 2

Intercomparison between the results for the method by Shukla
and Saha (1974) (method IV) and the method suggested in the

present study (method V)

Date Method r r
(May '79) ¢ 24
16 Iv. N=I 1.371 .899
V N=I 1.230 .695
17 IV N=1 1.645 .857
N=4 4.465 .839
V N=I 1.558 .666
18 IV N=I 1.332 .802
vV N=I1 1.279 .640
19 IV N=I 1.470 .696
N=2 1.688 .691
vV N=I 1.433 .629
20 IV N=I 1.461 .862
N=5 4.226 .684
YV N=I 1.302 .593
25 IV N=I1 1.630 .945
N=2 1.998 .923
V N=I 1.604 .895
N=13 1.954 . 869
26 IV N=I 1.359 .884
N=2 1.881 .844
vV N=l 1.227 .667
27 IV N=I1 1.592 .963
N=5 3.952 .838
V N=I 1.491 .786
N=5 1.808 .761
28 v N=I 1.333 .781
N=2 2.673 L7152
vV N=I 1.296 707
N=35§ 1.969 .680

these results the following interesting remarks can
be made :

(i) In case of all the 5 methods the value of ry x
is lower than that of ry. This is due to
the fact that the inclusion of irrotational -
component into the non-divergent wind field
always gives a better representation of the
original observed wind than the non-diver-
gent wind field alone.

(ii) Intercomparison of the methods I-IV con-
firms the earlier results of Shukla and Saha
(1974). However, from the results of methods
IV and V. it may be noted that both r 4 and
r x are the least for the method V.
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Fig. 4. The stream lines and isotachs of the reconstructed total
wind obtained from the stream function and velocity
potential fields, computed by (a) method IV and (b)
method V (isotachsin m/sec)

(iii) In order to obtain the optimum number of
steps (N) at which stage r4 x IS minimum,
at cach step ry is calculated and compared
with the values at the previous steps and this
process is continued for a large number of
steps (N=30). It is found that the minimum
r¢ y occurred at N=3 in method IV and
at N=1 in method V. From later experiments
with a large number of cases, it was found,
in contrast to the results of Shukla and Saha
(1974), that the minimum r ¢ x did not occur
for a fixed value of N.

i) For both the methods IV and V, it is observed

il tl?att r¢ is minimum for N=1 and then it

started diverging with the increase in number

of steps and thus r ¢ and r ¢ x were not always
minimum at the same stage.

In order to confirm the above findings methods 1V
anng were tried for a number of cases with FGGE
level I1Ib data for 500 and 850 mb level during the

period of 16 to 31 May 1979.

results for all these cases confirm the above
ﬁng?negs based on Table 1 for a single observation.
The results for only nine cases (16-20 May 1979, 25-
28 May 1979) are illustrated in Table 2, for further dis-
cussion. Table 2 reveals the following features :

(i) In all cases method V gives the least values of
rg and r¢ x-

ji minimum value of ryx by methods 1V

© '1;.?1?1 VI are not always obtained at the same
stage. Further as stated above, optimum
values of N for methods 1V and V are not
fixed values but vary between 1 & 5.

(jii) In all cases, values of both ry and ry x by

method V for N=1 are smaller than the

corresponding values obtained by method IV.

The method V improves the reconstructed

i total wind ¥ ¢ x with negligible deterioration

of ¥y field, which is quite important in compu-
tation of balanced geopotential height from
wind fields in the tropics whereas improve-
ment of r 4 y by method IV Jeads to remarkable
increase in ry value.

5.2. Qualitative analysis

From quantitative intercomparison, it became clear
that methods IV and V give considerably lower values
of ry and ry x compared to the corresponding values
by other methods (Table 1). Therefore, we have res-
tricted the qualitative evaluation of ¢ and X fields
only to methods IV and V.

For the purpose of qualitative intercomparison, the
streamlines and isotachs of observed wind and re-
constructed wind fields and stream functions obtained
by methods IV and V are illustrated in Figs. 1-4. From
thcf]e figures, the following general remarks can be
made :

(i) In general the stream function fields obtained
by both the methods (Fig. 2) are in good
agreement with the actual wind field stream-
lines (Fig. 1). However, the ridge observed
south of 15°N is better represented by method
V (Fig. 2b). The stream functions by method
IV (Fig. 2a) depicts a trough of low extending
from 30°N, 67°E to 3.75°N, 105°E (south-
east corner of the domain) aganst the observed
trough (Fig. 1) which extends from 30°N,
67°E to 15°N, 63°E only. This trough is
well represented in Fig. 2 (b).

(ii) There are remarkable differences between
streamlines and isotachs of reconstructed wind
fields ¥y from the ¢ fields alone by methods
IV and V (Fig. 3) at the boundaries whereas
they are almost similar in the interior of the
domain. The isotachs and streamlines of Vy
field obtained by method V (Fig. 3b) are in
good agreement with the observed wind analysis
(Fig. 1) over the entire region. ¥y obtained
by method 1V (Fig. 3a) shows westerly flow
close to the southern boundary against easterly
and northeasterly flow as observed in actual.
The magnitude of ¥y by method IV near
the northern boundary is higher compared
to the actual wind speed. Also inside the
interior region the trough orientation is better
represented by method V than by method 1V.
Besides these major differences, a number
of dissimilarities in the small scale processes
are evident in ¥y field by method IV, when
compared to the actual wind field which are
absent with ¥y from method V.

(iii) The streamline and isotachs of the recons-
tructed total wind Fyy from ¢ and X fields
by methods IV and V (Fig. 4) are almost
similar to each other and are in excellent
agreement with the observed wind (Fig. 1).
The southern end of the trough in Vyy from
method IV (Fig. 4a) is slightly oriented to the
east instead to the west as in Fig. 1. Further,
though almost all the small scale processes are
well represented by Vyy obtained from
method V some of the processes are not
properly brought out by method IV.

Thus the qualitative evaluation confirms the quanti-
tative intercomparison findings that though the total
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wind fields Vyy obtained by methods IV and V
are very close to the observed wind field the stream
function field and hence the reconstructed Vy
field by method IV differs significantly from the actual
wind whereas the ¥y obtained by method V shows a
good agreement with the observed wind analysis.

6. Conclusions

On the basis of the above results the following general
conclusions may be drawn

(f) There is no unique method of specifying the
realistic boundary conditions though it appears
that the result of computation of ¢ and X
fields depends heavily upon the type of boun-
dary conditions.

(ii) In comparison to a fixed stream function,
velocity potential boundary conditions (Diri-
chlets type) the normal derivative condition
is more realistic and less restraining. Further
the results obtained in the present study with
normal derivative boundary conditions have
provided significant improvement of s and X
fields close to the boundary as they are adjusted
to the interior grid point values in the process
of iteration.

(iii) The quantitative  intercomparison among
various methods based upon root mean square
vector error between the observed and recon-
structed wind fields confirms the results of
Shukla and Saha (1974) that the method 1V
is superior to earlier methods (I-111). However,
both qualitative and quantitative evaluations
with a large number of cases reveal that the
method suggested in the present study (Me-
thod V) yields better results compared to the
method 1V.

(iv) It is found that in the process of minimizing
rgy by a number of interative steps the value
of ry increases. However the delerioration of
Vy is much less in method V than in method
V.

(v) From qualitative intercomparison there is a
clear evidence that the quantitative superiority
of method V to method IV is mainly due to
significant improvement of 3 and X fields at
the boundaries.

(vi) The present method (method V) with N=1
gives quite reasonable results in alt the cases
which are better than the results of method
IV with even N==5. Therefore, for practical
purposes in order to minimize the computa-
tational time, the method V (with N=1) may
be used without any successive steps of iter-
ations.

From a large number of case studies it appears to the
authors that the method proposed in the present study
is the most appropriate for use in numerical as well
as diagnostic studies in tropics where wind observations
are given more weightage. 1In all these cases, balanced
height fields were estimated from the wind field. 1t is

found that the root mean sequare error (r.m.s.e.) bet-
ween the observed and computed geopotential heights
were within the inherent observational error limit. The
entire process of computation of i, X and balanced
geopotential fields does not take more than 2 minutes
CPU time on an IBM-360/44 system. These are some
of the favourable points of the method V over other
methods for computation of ¢ and X fields.
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