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ABSTRACT. The wave-zonal flow and wave-wave interactions are studied over the sphere for the initial
single linear barotropic unstable mode of the mean monsoon tropical easterly jet at 100 mb. The non-divzrgznt
barotropic global spectral model with truncation N=20 and M—=40 is integrated for 120 days for the study. It
is found that the wave-zonal flow interaction leads to an oscillation with a period of 35 days in the wave kinetic
energy and enstrophy. The relation between the zonal angular momentum transport and growth-decay cycle of the

wave is explored. The wave-wave interaction is responsible for the variation in the pzriod of low frequsncy oscilla-
tion between 25&35 days. The mean kinetic energy and enstrophy spectra, and wave-wave interactionin the wav:

number domain are computed and their role in the non-linear evolution of the waves is discussed.

1. Introduction

The linear dynamics of inviscid barotropic and
barotropic-baroclinic unstable waves associated with
the observed zonal flow of tropical easterly jet have
been studied by using dry quasi-geostrophic B-plane
models (Mishra e/ al, 1981, Mishra and Tandon
1983). Mishra (1987) has investigated the effects of
spherical geometry on the linear dynamics of the
barotropic unstable wave. Tupaz e al. (1978) considered
an easterly Bickley jet that has slow zonal variation
and studied the down stream amplification of westward
propagating, barotropic, Rossby wave disturbance.
Schoeberl and Lindzen (1984) have performed num-
erical integration by using non-divergent barotropic
vorticity equation in order to understand the evolution
of the point easterly jet instability as it interacts
with the mean flow n presence of single and multiple
waves. They also found that the role of wave-wave
interaction in the evolution process is unimportant.

Kwon and Mak (1988) extensively studied the non-
linear equilibration process in a forced, dissipative
barotropic f-plane model. They prescribed external
forcing in the form of an easterly Bickley jet. They
found that the equilibrium state may be either a steady
wave state, a vacillation cycle or a chaos depending
upon the values of two non-dimensional damping and
forcing paramenters. The effect of non-linear proces-
ses was found relatively minor in the down stream

amplification of westward propagating Rossby wav®
in a barotropic easterly jet having inhomogeneous hori-
zontal shear (William er al. 1984).

In this study. it is proposed to investigate the infl-
uence of single wave-flow interaction and wave-wave
interaction in the evolution of barotropic instability of the
observed tropical easterly jet. Further, the experi-
ment is performed by using barotropic model over the
sphere.

2. Model and energetics
(a) Quasi-linear model

In quasi-linear motions, the wave-zonal flow inter-
action is allowed while the wave-wave interaction
is suppressed. The quasi-linear motion is governed by a
linear perturbation equation and a zonal mean equation.
The author has studied the linear dynamics of baro-
tropic unstable wave over the spherical caith by
using the linear barotropic vorticity equation (Mishra
1987: hereafter referred to as M87). The barotropic
quasi-linear motion over the sphere is governed by the
following system of equations :
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In the above equations the over bar and prime  de-
note the basic state (zonal average) and perturbation
quantities respectively. ¢ is the potential vorticity and
¥ is the streamfunction. @ isthe radius of earth. ¢ and
A are the latitude and longitude respectively. R, is the
equatorial Rossby radius of deformation. whcse value
is 1900 km as computed in M87. The term involving
R, describes the free surface effect contribution to the
potential vorticity.

Vorticity generation by source term and its dis-
sipation by frictional processes are not included in
Eqns. 1 [(a) & (b)]. It may be noted that the linear vorti-
city equation [Eqn. | (a)] allows the nonlinear inter-
actions between different meridional modes.

(b) Kinetic energy and enstrophy equations for ¢iasi-
linear model

For clearer diagnostic of wave-mean flow interaction
processes, the enstrophy. equation in addition to the
kinetic energy equation, is used in this study. It may be
recalled here that the barotropic instability criterion
is given only in terms of the potertial vorticity of the
basic flow. The global average kinetic energy equation
is obtained by multiplying Eqn. 1 (a) by —%"and aver-
raging over the sphere. After some simple manipula-
tions, the equation can be written as :
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where the symbol <= - denotes meridional average,

1
= 1 § ()dp. The left hand side term ol Egn.(2)
1

denotes the time tendency of the global average kinetic
energy: the first term on the right hand side denotes
the barotropic conversion of basic state kinetic energy
into the wave kinetic energy and the last term stands for
time tendercy of the wave potentialenergy associated
with the free surface. U 'V’ denotes the wave meridional
flux of zonal angular momentum.

The global average enstrophy equation is  obtained
by multiplying Eqn. 1 (a) by ¢" and taking average
over the sphere. The ensirophy equations s finally
written as .

[ e (Vg (3)

ol a “ o

where | ¢'? denotes the wave enstrophy. The left hand
side of Egn. (3) represents the time tendency of the
global average enstrophy and the right hand side term
represents the conversion from basic state enstrophy

- 1¢% 1o the wave enstrophy <= ¢’ . Vg’
denotes the meridional flux of wave enstrophy.

The right hand side term of Eqn. (3)can be expresced
after integrating by parts and using the fact that

—_— i 4
Vg’ 0 at p 11, as i < ¥a EII
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Thus the wave enstrophy increases. or the conversion
of potential vorticity from basic flow to the wave takes
place when the wave potential vorticity flux is down-
gradient of the basic state potential vorticity. In case
of unstable wave the flux is northward in the region
of negative gu. For non-divergent motion. the following
relationship between momentum transport and pot-
ential vorticity transport is easily obtained:
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It can be easily shown from Egn. (4) and using the
condition U V' 0at p - 1 that ;
Vg =0 (5)

This implies that the global average wave potential
verticity transport vanishes.

(c) Non-linear model

The evolution ¢f two-dimensional non-divergent
motions under non-linear interactions is governed
by the following barotropic vorticity equation :
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where ¢ — T2 ¥ | 20Qu — R Y isthe lotal poten-
tial vorticity and ¢ ¢ - ¢ . In the equation, the
non-linear interaction is due to the advection of
potential vorticity as denoted by the last two terms
of the equation. Eqn. (6) conserves the energy and
enstrophy.
(dy Numerical method
The initial state as a single zonal wave superimposed
on a zonal flow is only considered in this study. The
non-linear interactions lead to subsequent generation
of waves with zonal wavenumbers which are integer
multiple of the zonal wavenumber of the given in-
itial wave. The spectral method is used to find the
solution of Egn. (6). For this purpose. the stream
function is expanded as a truncated spherical harmonic
series :
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where P,» (1) is the associated Legendre function nor-
malised to unity over the sphere, m is the zonal wave-
number, n—m--1 isthe pseudo-latitudinal wavenumber,
n is the two-dimensional wavenumber and ym |,
Y™, are the spectral (spherical harmonic) coefficients
of the streamfunction. M and N are the orders of
truncation of the series in m and n respectively. The
first summation goes from 0 to M at the interval of s.
The half-transform method is used to evaluate the non-
linear terms. The spectral coefficients are given by :
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The Euler-backward and leap-frog time differencing
schemes are used for the first and for subsequent time
steps, respectively. Robert’s time filter with the filter
parameter of .01 is used for damping temporal oscillation.

In the single wave-zonal flow interaction experi-
ments, for intital wave number s, the spectral equations
for m=0 and s are only integrated. The spectral eq-
uations for m = 0. s, 25,...... Integer (M/s) are
integrated in non-linear experiment for initial single
waves.

(¢) Spectral kinetic energy and enstrophy equations
for non-linear model

A better understanding ol mnon-linear interaction
particularly wave-wave interaction processes can be
achieved by use of kinetic energy and enstrophy equ-
ations in the zonal (m) and two-dimensional () wave-
number domain. Kinetic energy per unit mass (k)
for noa-divergent horizontal motion can be written as:

k=3 VP.V¥=17.(WYV¥)—1¥VeY (9)
The global average kinetic energy (K) is obtained from
Eqn. (9) in the following form :
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On substituting the truncated scries expansions (7)
and (11) into Eqn. (10) and using orthogonality condition
for the spherical harmonics, we get :
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Let K™ denote the global average kinetic enerev of
! g g 2)

the (m, n) mode of the motion. Then we can write

K = Z ZK:' 12(a)

m=0,5s n=m

where, ‘
Tl LA
‘P'z':" ‘P;" § ) . form =5
and
2 ﬂ%'.’- PoW L form =0
12(b)

To obtain the kinetic encigy equation in tetms of wave-
number, Eqn. 12(a) is differentiated with respect

to time :
m
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The above equation contains the tendency of spher-
ical harmonic coefficients of the stream function, which
can be obtained by a spectral transfcrmaticn of the
vorticity  equation  [Eqn.  (6)]. Finally,  the
kinetic energy equation in the m, n wavenumber
domain can be writien in the form :
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where the first term of R.H.S. of Eqgn. 14(a) repres-
ents the gain of kinetic energy by the m. n mode
duete non-linear (wave-zonal flow + wave-wave) in-
teractions. J™,., and J",,  aie the spherical har-
monic coefficients of the advection term of the vorti-
city  equation :
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The kinctic erergy equation in the zonal wave-
number domain can be casily obtaired by summing
Eqgns. 14(a) and 14(b) over the order » :
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The first term on the right hand side of Eqn. 16(a)
represents the kinetic energy gain of wave m due to
the wave-wave interzctions and its interaction with
the zonal flow. It may te rccalled that the first term
on right of Eqn. (2) gives the kinetic cnergy gain  of
wave m due to the wave-zonal flow interaction. which
can ke written in the spectral form as :
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where,  3Uy..Viw UsioVa ) is the  zonal
average momentum transport at a latitude due to
wavenumber m. The integral in Eqn. 16 (c) is evaluated
by using Gaussian quadrature method. The net gain
of K.E. at the wavenumber m due to its_interaction
with all other waves (wave-wave interaction) is  ob-
tained as the difference between the first term on the

right of Egns. 16(a) and 16(c). When Eqn. (14) is
summed over the zonal wavenumber m, the resulting
equation is the kinetic energy equation in the two-
dimensional wave number n domain
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The first two terms on the right of Egn. (17) denote
the gain of K.E. at the wavenumber s due to its in-
teraction with all other wave numbers including zonal
Mow. It is not possible in this case to separate out the
wave-wave interaction as has been achieved in the case
of zonal wavenumber m. Further, the sum of non-lincar
interaction term over the wavenumber #  should
vanish in order to conserve the energy.

Let £y s the global average enstrophy per unit

mass. which can be written as :
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It can be easily shown that:
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where (£y)" is the enstrophy of (m, n) mode. which
can be expressed as :
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where ¢, ¢4, are spherical harmonic coeflicienty
of the potential vorticity g¢.

The spectral equations for enstrophy are obtained
by following the procedure used for K.E. Spectral
enstrophy equations in the zonal wave number m
domain can be written in the form :
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Fig. 1. Time variation of the global averaged wave kinetic energy
per unit mass in m* s* for wave-zonal flow interaction
experiment for waves 5, 6 and 7
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The right hand side of Egn. (20) denotes the transfer
of enstrophy to wavenumber m from all other wave-
numbers through the non-linear interactions. In order
to isolate the wave-wave interaction process, the wave-
zonal flow interaction, as given in Eqn. (3). is expr-

essed in the spectral form :
L s
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wiazie Vi Qiom Vo G2.,,) is thz zonal average
potential vorticity flux at a latitude associated with
wuvenumber m.  The spectral enstrophy equation in
the two-dimensional wavenumber #n domain is written
in the form :
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3. Basic zonal How

The meridional profile of zonal wind is obtained by
averaging mean monsoon (June-August) zonal wind
at 100 mb over the longitudinal belt : 55" E-105°E.
The profile is fitted by a truncated Legendre series
at N =20. The same profile designated as F has been

utilised in M 87 for investigating the influence ol mid-
latitude westerly jets on the linear unstable modes of the
easterly jet. It may be noted that whereas the eastesly
jet satisfies the necessary condition for the baro-
tropic instability, while the westerly jets do not satisfy
the necessary condition.

4. Results
(a) Single wave-zonal flow interaction

In single wave-zonal flow interaction (quasi-linear)
experiments, il is assumed that only one zonal wave
is present throughout the integration. The initial
single zonal wave m which corresponds to the most
unstable linear mode is considered. The initial per-
turbation is normalised by specifying its global area
averaged kinetic energy as 10~* ot the global averaged
kinetic energy of the basic zonal current. This value
for the normalisation is chosen based on the results
ol sensitivity of the wave-zonal interaction on the
initial perturbation kinetic energy. It was found that the
evolution of a single wave under wave-zonal flow in-
teraction was rather insensitive to the further reduction
to the global average initial wave kinetic energy of
131072 m? s—2 For quasi-linear integration the
rhomboidal truncation at N=20 is chosen and
the model is integrated for 120 days. The zonal wave
experiment is peiformed for the wavenumbers 5-7.

The time variation of the global area averaged
wave kinetic energy per unit mass for wavenumbers 5-
7isshownin Fig. 1. Itisclearly seen that the wave kinetic
energy exhibits an oscillation with a period around
35 days. The time series of kinetic energy for waves
5-7 between day 16 and day 120 at the interval of one
day was subjected to a power spectral analysis.
The results indicated that the kinetic energy oscillation
has a period of 35 days. The amplitude ol oscillation
for wave 6is larger than that of waves 5 and 7.
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Frederiksen (1981) has also found the vacillation
cycle in the non-linear integration of a multi-level
primitive equation spectral model for the cases of
initial single zonal waves 7 and 10, superposed on mean
southern hemisphere zonal flow for January. Further,
he concluded from a comparison between his results
and those obtained by Simmons and Hoskins (1978),
wherein they had not found vacillation cycle in
their non-linear, experiments, that the existence
ot vacillation cycle is highly dependent on the nature
of basic state. In a recent study Kwon and Mak (1988)
have found the presence of vacillation cycle in a forced
dissipative non-linear barotropic system when the
forcing is sufficiently large.

An inspection of time variation of wave kinetic
energy for wave 6 reveals that the wave commences
its regular growth around day 14 after its initial
adjustments. Thereafter, the wave kinetic energy in-
creases exponentially till at around day 22. The wave
attains the maximum growth rate at day 20. During
the exponential increase of the wave kinetic energy
the wave behaves as a linear wave and attains the
growth rate which is almost equal to the linear
maximum growth rate value. Beyond day 22 the incre-
ase in wave kinetic energy is slowed down consider-
ably and it ceases to increase on day 26. when the
energy attains its maximum valuz. The decrease
in the energy is seen up to day 50. The compu-
tations of the barotropic energy conversion indi-
cated that the wave received kinetic energy from
the basic state during its growth phase while during
its decay phase it loses the kinetic energy to the basic

state.

It may be noted that after completion of the initial
cxponer{tial growth phase at no other time during
the integration the wave attains a groyvth rate compara-
ble 1o its values during the exponential growth phase.

)
T

LATITUDE —

1b)

Fig. 2. (a) Meridional gradient of basic state potential vorticity gu/a (107* m ' s1) and (b) zonal angular momentum
transport U'V7 (m* s™) profiles for wavenumber 6 at various times in the wave-zonal flow interaction experiment

Hence, we may conclude that at no time during the
life cycle of growth and decay of disturbances, except for
their initial formation, the non-lincar interactions,
particularly wave-zonal interaction. <an be neglected.

The exponential amplification of the wave is arres-
ted due to the modification of zonal flow as a result
of wave-zonal interaction. The wave is no longer the
most unstable mode for the modified zonal flow. It
is quite possible that the structure of wave deviates
considerably from the unstable modes. The angular
momentum transport associated with the wave 6 and
gpla profiles for day 14, 20, 26, 35 and 50 are plotted
and presented in Figs. 2(a) and 2(b) respectively.

As the wave grows exponentially after initial adjust-
ments, it transports .westerly angular momentum into
the easterly jet centre (Fig. 2 a) and the transports are
down the gradient of basic zonal flow. This process
leads to increase in gp in the region where it is negative
(Fig. 2b). gu=0 throughout the domain at day 26
when the wave growth is stopped. Even though the
necessary condition for the instability is not satisfied
before day 26 itself the wave is seen to grow slowly
but not exponentially. It may be noted in this
connection that the necessary condition for instability
is derived for the normal modes having exponential
growth. During the decay phase of wave (day 26-
day 50), the westerly angular momentum is transported
away from the easterly jet centre. The negative region
of gp is developed beyond day 35. Thus the neces-
sary condition for the instability is satisfied beyond
day 35. still the wave continues to decay.

V'’ & (V'q') jja profiles at different days are com-
puted (not presented). A comparison of these profiles
with corresponding gp/a profile (Fig. 2b) has indicated
that during the wave growth convergence of the wave
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Fig. 3. Meridional profiles of (a) stream function wave amplitude (10° m* s™) and (b) phase (deg) for linear

wave 7. quasi-linear and non-linear wave 6

potential vorticity occurs in the negative region of
‘qi/a so that the negative region is filled up while diver_
gence of the wave potential vorticity takes place in the
same region during the wave decay. Further, the wave
potential vorticity flux is down the gradient of ¢
during the wave growth and up the gradient during its
decay.

To identify the importance of wave-zonal flow
interaction in the development of waves, amplitude
and phase profiles for the most unstable linear wave
7 and the exponentially growing wave 6 at day 20
of quasi-linear case are presented in Figs, 3 (a) and 3
(b) respectively. It is seen that the meridional phase
tilt is larger for quasi-linear wave than for linear wave.
Similarly, the meridional characteristic scale is larger
for quasi-linear wave than for linear wave.

(b) Wave-wave interaction experiment

The initial state in the non-linear experiment is
identical to the single wave-zonal flow interaction
experiment. However, the first harmonic is generated
due to the self interaction of the initial dominant wave
and subsequent harmonics are generated due to self-
interaction and interaction between different harmonics.
The initial wave kinetic enegry is equal to the value
used in the wave-zonal flow interaction experiments.
The model is integrated for 120 days.

The global averaged wave kinetic energy per unit
mass and enstrophy as a function of time are studied
The time variations in two parameters are identical,
The time vatiation of the wave kinetic engergy alone
is presented in Fig. 5. A comparison between Figs. |
and 5 reveals that the small amplitude high frequency os-
cillations are developed due to wave-wave interaction.
Further, the wave-wave interaction leads to variation
in the period of low frequency oscillations, which varies
between 25&35 days, while in the case of wave-zonal
interaction experiment the period of oscillation is
fixed at 35 days. A further comparison between
Figs. 1 and 5 indicates that wave-wave interactions
do not allow the basic zonal flow to deviate from the
neutral state as much as observed in wave-zonal flow
interaction experiment.

Numerical experiments were performed in order
to identify the effects of Rayleigh type of friction in the
wave equation and the effect of a mechanism which
tries to restore the vorticity to its initial value in the
zonal vorticity equation. The details of the results
from these experiments are not presented, The following
conclusion was arrived at on the basis of the results,
The low frequency oscillation is suppressed by the
friction and is amplified by the restoring mechanism.

The meridional scale for exponentially growing
wave in the non-linear case is larger than that for
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quasi-linear and linear cases (Fig. 3a). The phase tilt
is smaller than that of quasi-linecar and linear cases
(Fig. 3b).

The stream function distributions in  A-¢ plane
at the interval of 4 days were computed for the
initial wave 6 case (not presented). An asymmetry
in the zonal direction in the intensity of low and high
is noticed. This asymmetry is due to the generation of
additional waves as a consequence of non-linear int-
eraction. A closed high around the latitude 35° N
is seen in the stream function field obtained after super-
position of perturbation field on the basic state. The
intensity of high fluctuates with time.

Figs. 4 (a) and (b) show the time mean global
average kinetic energy and enstrophy as a function of
zonal wavenumber m, It is seen that the shape of en-
ergy and enstrophy spectra for the growth and decay
phases are nearly the same. The kinetic energy and en-
strophy during the decay phase are larger than that
during growing phase for m <6. This may be due to
the relative slow decrease of kinetic energy from its
state of maxima compared to the rise of kinetic energy
towards the maxima. The kinetic energy spectra
have approximate m—57 powerlawfor 6 << m < 24
which is typical of inertial range power laws of two~
dimensional turbulence. In the wavenumber range
m>24, the power law followed by kinetic energy
spectra is m—1/2, whichis near to the m—* power law for
inviscid two-dimensional turbulence (Fredriksen and
Sowford 1980). The slow decrease in the kinetic energy
spectra for the larger m is due to the accumulation
of the energy in the largest wavenumber in the absence
of dissipation. It is scen that the enstrophy spectra
vary as m—2in the wave number range 6 < m < 12
and their variation is m in the range 18 < m < 36.
It was also noticed that the decrease in kinetic energy
and enstrophy with m—23 is rather sharp in the presence
of dissipation and particularly for the larger m.

The dominant wave 6 receives the maximum kinetic
energy from wave-zonal flow and wave-wave interactions
during the growth of perturbation (Fig. 6). The wave-
zonal flow and wave-wave interactions are rather weak
for m = 12. The rate of loss of kinetic energy by the
zonal flow (m=0) due to zonal wave interaction is
little more than the rate of gain of energy by wave
6. This indicates that wave-zonal flow interaction is
much stronger than the wave-wave interaction. All
waves are receiving kinetic energy during the growing
phase, During the decay phase, the maximum transfer

of kinetic energy to the zonal flow takes place at wave
6, via wave-zonal flow interaction, while all other
waves except wave 18 continue to receive the kinetic
energy due to wave-wave interaction. It may also
be noted that the rate of increase of Kkinetic energy
of zonal flow is more than the rate of loss by wave
6; this implies that a part of energy received by the
zonal flow from wave 6 is transferred to other growing
waves via wave-zonal flow interaction.

5. Conclusion

It was intended to study the role of wave-zonal
flow and wave-wave interactions in the non-linear
dynamics of initial single growing barotropic wave
over the sphere. For this purpose the evolution of
perturbation superimposed on the unstable mean
monsoon upper tropospheric tropical easterly jet
at 100 mb was simulated by utilising the non-divergent
barotropic global spectral model. It was found that the
wave-zonal flow interaction dominates over the wave-
wave interaction. Further, the non-linear wave is more
realistic than the linear wave. Some of the asymmetries
in the disturbance can be attributed to the wave-wave
interactions.

It was not possible to explain satisfactorily the growth
of waves even though the necessary condition for
barotropic instability is not satisfied by the zonal flow.
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