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ABSTRACT. Radiosonde records for 12 major Indian cities have been checked and analyzed for intrasea-
sonal activity in the monsoon.  After forming time series with two observations per day, removing bad values, and
filling data gaps with linear interpolation, the time series have been plotted withand without filtering and have
been subjected to spectral analysis to reveal the nature of intraseasonal fluctuations and their interannual
variability, Spectra were estimated from the time series using the maximum entropy mathod (MEM), which
fits an autoregressive (AR) model to the time series. MEM spectra based on tenth order AR models show that
most of the variance in monsoon weather comes from intraseasonal activity with periods longer than 10 days,

but do not show separate peaks at 10-20 and/or 30-50 day time scales for the majority of summars.

1. Introduction and description of data set

Only a few studies, e.g., those by Mehta and Ahlquist
(1986) and Mehta and Krishnamurti (1988), have looked
at intraseasonal fluctuations in the Indian summer
monsoon using several years of data. The purpose
of our investigation was to examine the importance of
intraseasonal monsoon activity using the longest multi-
level data set known to the authors.

The data chosen were Indian radiosonde records
obtained on magnetic tape from the U.S. National
Center for Atmospheric Research. The data on this
tape end on 30 June 1978. Soundings for some cities,
like New Delhi date back, with few gaps, to 1 January
1951, while a few cities have less than a hundred
soundings. The recoids for 12 major Indian cities
were chosen for study : Ahmedabad, Allahabad, Bom-
bay, Calcutta, Gauhati, Jodhpur, Madras, Nagpur,
New Delhi, Port Blair, Trivandrum and Visakhapatnam.
Each of thesc cities radiosonde records is at least a
decade long, most are over 15 years long, and a few are
over 25 years long.

Twice daily time series werz formed for five variable
(zonal wind speed, meridional wind speed, tempera-
ture, geopotential height and dewpoint temperature)
at cight levels (100, 85, 70, 50, 40, 30, 20 and 10 kPa—
multiply by 10 convert kPa to mb). At this point in the
proczdure, any missing data in the time series were
filled with a missing data indicator equal to —999 (which
could never occur as a legitimate value for any of the
variables).

Two quality control tests were imposed. The first
required that all observations fall within an acceptable
range of valuss. The acczptable 1ange of values for
each variable was determined subjectively as follows.
A histogitam was prepared and plotted for cach variable
which showed the distribution of time series values.
From these histograms, it was possible to see, at a
glance, what were reasonable minimum and maximum
limits for legitimatz data, while flagrantly small or large
values stood out prominently. Limits, subjectively
chosen based on the histograms, werz used to screen
the data, and any valuzs which lay outside of the
“acceptable™ ranges were replaced by the missing data
value —999,
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This first test was not enough to catch all the bad
data. We also looked for spikes in the time series.
A “spike” was defined as a single datum whose value
was markedly different (the precise amount was adjusted
for each variable) from the value that preceded it and
the value that followed it. Any spike was replaced
by the missing data value —999. We have not per-
formed any inter-level checks such as looking for supet-
adiabatic lapse rates.

At this point, the time series were scanned again
numerically, and all the missing data values of —999
were replaced by linear interpclation in time.

Since intraseasonal activity was our primary interest,
the mean seasonal cycle was removed from each of
the time series. The mean seasonal cycle was defined
as a constant plus sinusoids with periods of 1, 2, 3.
and 4 cycles per year. The seasonal cycle was determi-
ned by least squares methods.

2. Maximum entropy method
2(a). Spectral analysis

Most previous studies of intraseasonal monsoon
activity have reported 10-20 and 30-50 day activity.
So far, our time series have not produced many satis-
tically significant 10-20 and/or 30-30 day spectral pzaks,
so we want the reader to view our results with caution.
Hence, we explain our spectral analysis methods in
detail.

By definition, the specirum of a random process
is the Fourier transform of the process’s autocovaria-
nce function (Jenkins and Watts 1968). One cf the
key difficulties in estimating the spectrum of an obser-
ved time scries is that observations are of finite length,
<o that the autocovariancz can be estimated for only
a finite number of lags. Estimating the spectrum by
Fourier transformation of the estimated autocova-
riance assumss that the autocovariance is zero for all
lags larger than those at which the autocovariance is
estimated. Alternatively, one may estimate a spcirum
by smoothing the periodogram, but computation of
the periodogram assumes that the data are periodic.
Both of these methods involve unrealistic assumptions.

The Maximum Entropy Method (MEM) handles
the problem of limited knowledge of the time series
in a different manner. MEM, reviewed by Ulrych
and Bishop (1975) and Papoulis (1981), extrapolates
the autocorrelation to infinite lag using a statistical
model which maximizes the “entropy™ (uncertainty) of
the extrapolated values while being consistent with the
known, i.e., cstimated, autocorrelation  values.  As
shown by van den Bos (1971), thc same StatlSllFa]
model would be determined by least squares fitting
an autoregressive (AR) modzl to the observed time
series. AR modelling is a spacial case of autoregressive,
integrated, moving average (ARIMA) modelling, which
is covered in detail by Box and Jenkins (1976). The

reader is also referred to Jaynes’ (1982) discussion
of the relation betwezn maximum entropy and other
methods of spectral analysis and to Bendat and Piersol’s
remarks (1986) regarding spectra based on AR, MA,
and ARIMA models.

An AR process (x,) of order N driven by white noise
(n,)is of the form :

N
Xe —’\.’.: ]af\ Xe—k -+ W (1)

whete the subscript ' indicates time. The coefficients
{a,} for this model can be determined using subroutine
YWPR* or MEMPR which appear inthe appendix to
Ulrych and Bishop (1975).

Without approximation, the spectrum of an AR
model is:

(E]
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S(f)= — -
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| k=1

for0 < f< fx (2)

where fy=1/(2/.1) is the Nyquist frequency and o2
is the variance of the whitz noise process {n,}.

Traditionally, therz have becen two problems with
MEM speciral estimation : (1) choosing the best order
N for the AR model and (b) estimating spectral confi-
dence limits. Ulrych and Bishop (1975) recommend
the value of N which minimizes Akaike’s Final Predic-
tion Error (FPE): this selects the AR model which,
if used for forecasting, would have the least mean squa-
red error [ see Ulrych and Bishop (1975) for details].
Less has been written about MEM spectral confidence
limits. to which we now turn.

2Ab). Confidence limits for MEM spectra

There is no guarantsc that the spectrum of a random
process must be smooth. Nonetheless, any time we
estimate a spectrum by smoothing a periodogram or a
transformed autocovariance, we are estimating as
smoothed version of the spectrum [Jenkins and Watts
1968, (6.3.30), p. 243]. Likewise, if we use MEM
and choose a model order that is too small, then our
spectral estimate will be a smoothed version of the
actual spcetrum.

We must keep in mind that confidence limits on an
estimated  spectrum .do not represent our confidence
that the actual spectrum lies within the indicated bounds;
rather, thzy represent our confidence that the spceirum
smoothed by the same procedure as uscd to stabilize our
spectral estimates lics within the indicated bounds.
At first glance, ong may think it best to choose a large
order AR model for all MEM spectral estimates so
that the cstimated spectrum will not be smoothed too
much. The trade-off for this increased resolution is a
lack of stability in the spectral estimates, i.e., possibly
spurious peaks and wider confidence limits.  Reid

sSubroutine YWPR has a problem unless your computer automatically sets variables to zero befora they are used. Its statement 3 says

DP=DP+G(NN-+1- K)Y*DPHI(K + 1), but DPHI(K = 1) is not defined when A —=NN. DP is never used when K=NN, 50 the simplest solu-
tion is to set DPHI (LG 1) = 0 just after statement | which defines the lower index values of DPHL.
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(1979) has proposed a method to estimate confidence
limits for MEM spectra, but we do not understand
his procedure well cnough to apply it. Instead, we will
discuss statistically sound methods for confidence
limits that are easy to understand and apply.

We consider two cases. The first case is where an
observed time series is long enough that it can be cut
into 10 or more pieces which can be analyzed indepen-
dently. This is the situation with our radiosonde data
where we have between 10 and 25 summers of data
for each of the cities under study. The second case is
where a time series is too short to be split into pieces.

When a time series is long enough to be split into
ten or more separate pieces, the simplest way to estimate
confidence limits for MEM spectra is analogous to
what Bartlett proposed for traditional spectral analysis
(see the examples in Jenkins and Watts 1968, p. 239).
Cut the observed time series into ‘M’ pieces of equal
length and find the average estimated spectrum :

M

S = - Z S (fim);

m=1

&)

where S (f; m) is the estimated MEM spectrum of the
mth piece of the time series. By the Central Limit
Theorem, if ‘M’ is sufficiently large (greater than 10
is often sufficient), then the variance of 5( f) at freqqency
£ will be nearly equal to af*/M where o/* is the variance
of S(f;m) across the different values of m at fixed
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Fig. 1. Average of Akaike’s Final Prediction Error normalized by
dividing by the time series variance, plotted as a function of
the AR model fitted to time series. The data on which this
plot is based are 27 summers (| June-28 October 1951-1977)
of zonal wind data at'85 kPa over New Delhi
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frequency /. The centred 9 9 confidence limits
would be § (f) +1.6505/\/M, where both 3( ) and o,
are functions of frequency.

When a time series is too short to be cut into 10
or more picces, we can still estimate the variability of
an estimated spectrum. Suppose that we have estimated
an AR model of a specified order N based ona time
series of length T, and we want to know how different
the spectrum would look if we had observed different
realizations of that random process. To answer this
question, we use the AR coefficients determined from the
observed time series along with a Gaussian random
number generator to generate ‘M’ simulated time series
of the form of Eqn. (1), where ‘M’ is several hundred
or a thousand. In oider to compute each simulated
time series, we must arbitrarily choose N start-up values
{x1,....,xy}.  Each of the M simulated time series
should be sufficiently longer than T so that they can be
truncated to length 7 by dropping enough values
from the beginning of the time series so that all “me-
mory™ of the precise start-up values will be lost. This
means that we nced to omit N+ L points from the
beginning of each simulated time series, where N is
the order of the model and where L is the number of
lags needed for the autocorrelation of the model to go
essentially to zero.

For each simulated time series truncated to length T,
we estimate an AR model. Using (2), we compute
the model’s spectrum S(fj:m) at a set of discrete fre-
quencies f;, for =1,....., J; m=1,..,M is the




JON AHLQUIST et al.

T - ~r T —r - T
1951 1953 1955
+— NO DATA— #—NO DATA ey

FE Y
1958

bt PRraPe |

1963 1964

= R, = =2 S
1983 1969
b=—=ND DATA—— | +—NO DATA——

0 01 g
FREQ{CPD)

L e B

Fig. 2. MEM spectra based on 150-day time series (I June-28 Fig. 3. MEM spectra as in Fig. 2 but for 85 kPa sonal wind over
October) for 85 kPa zonal wind over New Delhi. Years Trivandrum
covered: 1951-1977. Tenth order AR models were fitted to
the summer time series. The value at the top of each spectral
density axis is 400 (m/s)*/(cycles/day).
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Fig. 4. 1000 time series were gencrated from the tenth order AR Fig. 3. Th= 1000 spectra summarized in Fig. 4 were computed ot
model that produced the spectrum for 1951 in Fig. 2. The fi=1(1(0.004 cylces/day) for j=0,....50, Let »; be the number

spectrum of this model is referred toabove as the truespectrum. of spectra that had theirmaximaat fj, The histogram depicting
Thespectrum of the average of the 1000tenth order AR models nj is plotted as a dashed curve. For reference, the spectrum of
fitted to the generated time series is also shown above with its the process used to generate the 1000 time series is plotted as a
confidence limits,which indicate the spread in the values of the solid line. Thz numbers labelling the ordinate apply both to

1000 spectra. Frequency units are (ctcles/day). Spectral ni as well as to the spectral density, whose units areim/s)?/
density unit are (m's)?/(cycles/day). oo (eyeles 'day).
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counter for the simulated time seiies. Centred 907
confidence limits at each fequency f; are then found
by fixing f; and sorting through the m-index of
S(f;;m) to find the values in the 5th and 95th percentiles.

3. MEM spectra summer by summer

We begin by plotting in Fig. | the average of Akaike’s
Final Precition Error (FPE) as a function of AR model
order. The average is based on AR models fitted to 27
summers (1951-1977) of 85 kPa zonal wind data for
New Delhi. Ulrych and Bishop (1975) suggest that the
order of the AR model be chosen so that the FPE
is minimum, The average FPE is minimum for a fifth
order model, and the authors have found similar results
when fitting AR models to monsoon data from NMC
operational analyses. Nonetheless, we decided to use
tenth order AR models for our analyses to minimize
possible loss of spectral structure., As the reader will
see, even with 10th order AR models, these particular
spectra do not display much fine structure. Picking a
model order is a compromise between competing factors,
If too high an order is chosen, MEM can produce
spurious spectral peaks (Ulrych and Bishop 1975, pp.
188-189; Reid 1979, p. 5289). Conversely, precise
representation of a strictly periodic time series with
period 50 days would require a 100th osder AR model
if the interval between observations is one half day. This
is the standard problem with spectral analysis :  one
cannot have both high resolution in frequency as well as
stable estimates of the spectral density function.

Spectra based on 10th order AR models for the 85 kPa
zonal wind component at New Delhi and Trivandrum
are shown in Figs. 2 and 3, respectively. The results for
other cities are similar. Although time scales longer
than 10 days explain most of the variance, most years
do not have identifiable spectral peaks at 10-20 or
30-50 day time scales. Rather, red noise predominates.
Fig. 4 shows the results from simulating M—1000
summers based on the 10th order AR model for 1951
which did display a low frequency peak. The average
estimated spectrum from the simulations closely recovers
the spectrum of the process used to generate the simu-
lations, although the confidence limits are fairly broad.

erhaps more important is Fig. 5, which tabulates the
frequencies at which the 1000 spectra computed from the
simulated time series had their spectral maxima. Roughly
95%, peaked at a frequency near the peak in the 1951
spectrum, and less than 59, peaked at zero frequency,
which would be the case with red noise.

From this, we conclude that the observations are
more consistent with red noise than with a 10th order
AR model that has a low frequency peak. In particular,
these spectra do not separate intraseasonal variability
into 10-20 and 30-50 day time scales. The same resuit
applied to all twelve cities we analyzed. It is possible,
though, that Akaike’s FPE is not the best way to choose
the model order and/or that principal components of
EOFs computed from spatially distributed data might
separate  10-20 and 30-50° day time scales. To
examine these possibilities, we plan to further investigate
the properties of MEM spectra and to compute EOFs
and their principal components,

4. Time-height diagrams of zonal wind

We filtered time series with a 30-50 day filter in
order to examine the vertical structure of activity on
this time scale. Over all cities, fluctuations occur through-
out a deep layer in the troposphere. At New Delhi, this
extends all the way to 10 kPa; at Trivandrum to.30kPa.
Over both these cities, there is little vertical propagation.
At 30-50 day scales in the NMC operational analyses
for 1979, Mehta and Ahlquist (1986, p. 169) reported
little vertical propagation at 20°N but there was up-
ward propagation at the equator. The record for Calcutta
exhibits both upward and downward propagation.

5. Summary

We regard the following as the main findings of our
research to date :

(a) Confidence limits for MEM spectra can be
estimated with statistical methods,

(b) Intraseasonal time scales are important in the sum-
mer monsoon throughout the troposphere, but
MEM spectra based on 10th order AR models at
Xindividual cities do not separate 10-20 and 30-50
day timescales. This finding may reflect reality,
or it may result from an overly conservative choice

of model order (even though Akaike’s FPE recom-
mends a lower order than what was used), or
spatial scales may need to be separated in order

'to cleanly separate 10-20 and 30-50 day activity.

(¢) Vertical structure of 30-50 day activity over India

during the summer is in phase throughout a deep
fropospheric layer. Vertical propagation occurs
over Calcutta but is not prominent over New
Delhi and Trivandrum.

As follow-up work to this study. we plan to investi-
gate horizontal structure on intraseasonal time scales.
This will include principal component analysis and time
sequences of horizontal and vertical structure.
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