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Spectral representation of hemispheric flow patterns

H. 8. BEDI
Meteorological Office, New Delhi
(Received 9 May 1975)

ABSTRACT. The method for representing hemispheric atmospheric flow patterns in terms of surface spherical harmonics
is discussed. Spectral form of linear balance equation is deri ved and solved with a suitable boundary condition. The results show that
the planetary scale atmospheric systems can be represented to a high degree of accuracy by a limited number of spherical harmonics.
The stream function spectrum arrived at by solving spectral form of linear balance equation gives proper representation of actual

atmospheric systems.

1. Introduction

During recent years, sufficient interest has
been developed in the use of spectral methods
for study of dynamics of large scale atmospheric
systems.  Theoretical as well as observational
studies based on these methods have thrown much
light on the non-linear dynamics of the atmosphere
(Lorenz 1963, Saltzman and Fleisher 1960, Wiin-
Nielsen 1964, 1967). Some spectral models for
short and medium range prediction of atmospheric
flow have also been developed (Robert 1966,
Kurbatkin 1972). Till recently the development
of spectral prediction models has been hampered
due to difficulty in calculation and storage of large
pumber of ‘interaction coefficients’. However,
recent works of Eliasen ef. al. (1970) and Orszag
(1971), have led to the development of a
relatively simpler and straight forward method of
calculating interaction terms. This has led to
development of some sophisticated hemispheric
- and global spectral models (Bourke 1972, WMO
1974). For spherical or hemispherical domain, spheri-
cal harmonies are the appropriate orthogonal fune-
tions and have been used in these models. The
success of these spectral models, whether for
diagnostic or prognostic purposes depends
much on the efficient representation of basic
data by its spectral components. The purpose
of the present study is to demonstrate the effective-
ness of spherical harmonic spectral components in
representing hemispheric geopotential field as well
as derived stream function field which is commonly
used as basic input in different atmospheric

models.

2. Analysis procedure

At a given time, any scalar field ‘A’ at a constant
height or pressure level is function of latitude

0 and longitude A. Any piecewise differentiable
field over spherical domain, a condition which
different meteorological fields like geopotential
height, are assumed to fulfil, can be represented
t1 a desired degree of accuracy by superposition
of a truncated series of spherical harmonie compo-
nents so that
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P, () is normalised associated Legendre func-'
tion of first kind and s given by
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and P,™ () =0 forn <m
where = sin 8 and A4,™ is complex amplitude,

M and J determin- the truncation of spheri-
cal harmonic spectrum.

It can be shown that
Py™ (p) = (—1)™ P™ (i) (4)
and 4, = (—1)"™ A,*" (5)
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As*™ being the complex conjugate of A, ™

For surface spherical harmonic representation of
any real field it is necessary to include harmonics
of order m as well as of —m as has been done in

(1).

Physically, ¥,™ ( p, A ) represents a two-dimen-
sional wave on a spherical surface with m sinusoidal
waves in the east-west direction along any

latitude circle associated with factor '™ and

a  polynomial representation having n—m
zeros (nodes) between north and south poles
associated with factor P,™ (u) . P,™(u)'s with even
number of zeros between poles are symmetric
with respect to equator whereas those having odi
number of zeros are antisymmetric.

Normalised associated Legendre [unctions and
spherical harmonics satisfy the following orthogo-
nality conditions over a spherical domain
and
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These orthogonality conditions do not necessa-
rily hold good for a hemispheric domain. It can
however be shown that members of a st of
associated Legendre functions having either odd
or even number of zeros are orthogonal to each
other over the hemisphere. Thus for a hemisphere
we get a more specialised orthogonality condition

[ 1 for ny = n,
L 0 for n # n,

1
f P"im {.u,) ’ Pnzm {P') "Iﬂ' =
—1

where n,—m and n,—m are either both even
or odd. P,™u)’s in (8) are 4/2 times their
corresponding values in (6). A similar modifi-
cation applies to the orthogonality coadition (7)
for spherical harmonics over a hemisphere.

Using these orthogonality conditions, a given
scalar field over the hemisphere may be analysed
in terms of spherical harmonic components which
are either symmetric or antisymmetric with res-
pect to equator. Which of these two types of
analyses should be applied to a given field is, ho-
ever, to be dictated by th~ physical consideratio::s,
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The actual procedure for analvsis has two
stages ;
(1) Fourier analysis of data along latitude
circles upto desired order m.
(#7) Analysis of Fourier amplitudes in terms
of desired number of associated Legendre
function of first kind.

If a,(0) and b,(6) are the amplitudes of
cosine and sine waves of order m along latitude 6,
then utilising orthogonality condition (8), the
real amplitudes of spherical harmonics of order
m and degree n are given by :

1
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Like Fourjer components the complex and real
amplitudes of spherical harmonics are related
as
”ﬂ?ﬂ

L/ —
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For the analysis under stage (i7) above by use of
orthogonality condition, it is necessary to have
values of Fourier amplitudes at different latitudes
extending from equator to the north pole. The geo-
potential data analysed were picked up at 5° lati-
tude-longitude intervals from 10° to 80 °N. The
mean heights at equator and pole as well as at
5°N and 85°N were also estimated from the
charts iteself. The Fourier amplitudes of different
wave comporents were assumed to be zeros at
tquator and pole and those at 5°N and 85 °N as
half of the amplitudes at 10°N and 80°N,
respectively. It was also assumed that the
zonal component of wind is symwmetric with
respect to equator and consistent with this
assumption the geopotential field was analysed in
terms of a parallelogrammic truncated series of
112 symmetric spherical harmonies with m < 15
and n—m having values 0, 2, 4 ) 12,
Such a constraint is necessary in the absence of
data from the other hemisphere.

Numerical quadrature based on Simpson’s rule
was used for evaluating integrals on the right
hand side of (9).

The values of associated Legendre function
needed for the analysis were caleulated for 0° to
90° N at 5° latitude intervals using the following
recurrence formulae :
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The progress of computations for generation of
P,™s is schematically shown in Fig. 1. For a parti-
c.lar value of 8,starting with P?= 1/4/2 the value
of P,,™ for any m can be calculated from first formu-
J]a with computations proceeding along diagonal
line OA. Remembering that P,™=0 for n<m,
the second formula is used thereafter to compute
P,™s having fixed value of m and successively
increasing value of n. The computations for this
purpose proceed along line parallel to n-axis.
The progress of computations for function P2 for

n varying from 8 to 20 is shown in the figure by
ATTOWS,

As a check, the values of P,”s calculated above
were compared with those given by Belousov
(1962) and were found to agree with them. Before
further use, these functions were multiplied by4/2
to make them orthonormal over hemispheric
domain.

3. Speetral form of linear balance equaticn

Linear balance equation

V.(fV¥) =V (12)

can be used to obtain ¥ field from a given ¢
field.

An examination of expressions on the both
sides of (12) shows that if ¢ is represented in terms
of spherical harmonics symmetric with respect
to equator, ¥should be expanded in terms of spheri
cal harmonic functions antisymmetric with
respect to equator.

Thus ¢ and ¥ fields may be written as

M |m| + 3,
¢=Z ‘ﬁﬂmY"m
m=—M n=|m|,2
M il + 3, (13)
Y = IR ]
m=—M ple=lml+1,2

where J, is an even integer and J,, an odd and the
summation over index # is at the interval of 2.

Substituting (13) in (12) and integrating both
sides of the resulting equation over a hemispherical
domain, we get the spectral form of linear balance
equation as (for details see Appendix).
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and ¥, and @,™ are the amplitudes of stream
function and geopotential fields respectively. We
adopt the truncation configuration of stream
function as

0<Im<M=15

n—Im|=1305....,8=13

and of geopotential as

0<Im <M=15
'n—'lm|=0,2,4,- . e -,J2=12

Relation (14) consists of a set of linear
algebric equations with number of dependent
variables one more than the number of equations.
However, a ' B,™ as well as ¥, _, are equal to
zevo, (14) reduces to the following closed set of 7
algebric equations for each m, as shown in Eq.
(16).

Starting with the first equation, the above system
of equations can be solved easily to give stream
function spectrum from the geopotential spectrum.
However for m=0, both sides of the first of these
equations vanish identically resulting in a singular
solution for ¥,°and the system cannot be solved.
This difficulty can bs overcoms in two possible
ways :

(i) The first equation giving the singular solution
may be excluded and instead one more equation of
a higher degree added at the end of above system
of equations. This requires the truncation of zonal
harmonic spectrum of meopotential at @,° instead
of at @,,°. Assuming ®,;” =0 as the upper spectral
boundary condition, we now get a closed system of
equations which can be solved easily by building a
solution from the lower to higher degree harmonics.
By this procedure, however, the initial spectral
boundary error magnifies taking alteraativel y
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positive and negative signs as it propagates from
the lower to higher harmonics (Merilees 1966)

(i) The value of ¥)° may be obtained on the
basis of some physical considerations, Using this as
the lower spectral boundary condition and after
dropping the first equation, the system (15) can be
solved easily.

¥,° and mean relative momentum M can he
shown to be related as

!‘PO - 1/3

1 - T J_lf (16)

(See Appendix)

The mean relative momentum can be obtained
from mean geostrophic wind calculated at different
latitudes and thus ¥1°may be evaluated. Eliasen
and Machenhauer (1965) used this procedure to
circumvent the problem of singular solution. In
this case, unlike procedure (¢), any error in the
injtial estimate of ¥,° dampens taking alternating
signs as the solution proceeds from the lower to

nin -+ 1)

the higher degree harmonics (Fig. 2). As may be

seen the error in ¥,° reduces to about one-fourth
n¥:"and to as low as to one-tenth in ¥1,°. Thus
the second procedure is relatively superior to the
first one and is adopted for spectral solution of
balance equation. A comparison between the zonal
mean  geostrophic wind and zonal mean wind
calculated - at different latitudes from the
stream function spectrum thus caleulated is given
in Table "1. The zonal mean wind obtained from
stream function spectrum is found to be in agree-
ment with zonal mean geostrophic wind to a high
degree of accuracy over all the latitudes. The zonal
wind based on stream function calculated by pro-
cedure (¢) has been found to be in poor agreement
with the zonal mean geostrophic wind at the hi gher
and the lower latitudes (Merilees 1966).

4 An example of effectiveness of spherical harmonies‘ in
representing geopotential and stream funetion fields
To illustrate the efficiency of surface spherical
harmonics in representing the hemispheric geopo-
tential and stream function fields we consider
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Fig. 2, Propagation of spectral boundary error

the 500 mb flow patterns of 1 January 1969. Fig, 3
shows the actual geopotential field while Fig. 4 has
been arrived at by recombining 112 spherical
harmonic components into which the actual geo-
potential field was analysed. Fig. 5 is based on
combination of different components of stream
function spectrum corresponding to geopotential
gpectrum representing Fig. 4.

The circulation patterns (Fig. 3) are the typical
ones for the mid-troposphere during winter season.
A well marked low pressure area lies over Central
Asia extending east-west through China and neigh-
bourhood with two centres —one near 80°E/50°N
and the other north of the Sea of Japan near 135°
E/45°N. A low pressure area to the north of Alaska
is the centre of Polar cap low. A well marked trough
runs from Alaska to North Pacific Ocean upto
about 165°E/30°N. Another shallow centre of
polar-cap low lies over Greenland with two well

TABLE 1

Comparison between 500 mb mean zonal geostrophic wird and
mean zonal wind caleulated from stream funeticn spcefia

July 1968 January 1969

Lat. r———'\-’-—h——\ —P——

(°N) e Uy U Uy
0 —0-4 0:0 0 0-6 1.3
b —1.4 —1.2 17 2.9
10 e —3-7 56 48
]5 —fjs 3 —5-4 B' 9 S' ﬁ
20 —4.1 —4:5 13-0 12-9
26 —0-5 —0+8 17-0 16:8
30 4+1 4.1 19-8 19-6
35 82 8.2 20.2 20.2
40 103 10.2 18+3 18+5
45 10+3 10:2 146 14+8
b0 8.8 8+8 102 103
bb 6:8 -0 6-4 64
60 bl b1 3-8 38
65 37 3-6 2.3 2.4
70 2.5 2.4 1-6 1.7
75 1.6 16 1.3 1.3
80 0.7 0.9 0.9 0.8
85 0.4 05 0-5 0-4

ﬁgmean zonal geostrophic wind

'(_j‘!, mean zonal ¢ wind with boundary condition
= — {'\/3f2).ﬂ_f unit : m se¢™?

marked troughs—one over North Atlantic Ocean
along about 50°W and the other over West Europe.
A well marked low pressure area over East Canada
has a trough running upto Gulf of Maxico. Well
marked ridges lie between East-Central Asia and
Alaska low pressure systems as well as between the
ow pressure area over West-Central Asia and the
trough over West Kurope. An extensive high
pressure area centred near 20°W/G0°N lies over
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Fig 3 500 mb geopotential filed of January 1969

TABLE 2

Parcentage of total varianee explained by djfferent spherieal harmonies
in representation of 500 mb chart of 1 January 1969

W W~ O

-

(=1}

<16
0- 06
-01 <08 .01
.00 06 - 08 . - 00 -00
+03 I8 3. 07
0. 66 - 10 4-39 3-1f » 2 0-20

78

6-

Total

=

67
86

H-26

5
1.¢
1-i
1

1

0-
0-1f
0-

NoTE—0.00 means less than 0. 005
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Fig. 4. 500 mb geopotential field constructed from spherical harmonic components of 1 January 1969
Contour heights in metres, difference between actual and fitted contours heights in tens of metres.

North Atlantic Ocean and is flanked by troughs to
its east and west. Among the low latitude systems a
well marked trough lies to the west of Maxico.
A shallow trough lies to the west of Africa. Another
shallow trough extending from the north lies over
Arabian Sea. Sub-tropical high has its axis running
between 10°N and 15°N over Asia and between
20°N and 25°N over western half of north
Atlantic Ocean. Centres of high pressure cells lie
over Bay of Bengal, Phillipine Sea and North-
West Atlantic Ocean.

An examination of Fig. 4 shows that the above
systems have been brought out very well by spheri-
cal harmonics representation. The areas having di-
flerences between fitted and the actual geopotential
values of 20 gpm or more are also marked in this
figure. We see that the differences of this order
appear generally near well marked centres of
high and low pressure systems and . troughs
and ridges. The higher differences are mostly to
the north of 70°N. The fitted values are generally
slightly higher near low pressure areas and
slightly lower near high pressure areas thus
smoothening out the actual patterns to some extent.

The contribution of each harmonic in representing
this geopotential field can be seen from Table 2
which shows the percentage variance explained
by different harmonics. All the components toge-
ther explain more than 98 per cent of the total
variance out of which 78:7 per cent is explained
by 6 zonal harmonics alone.

From Fig. 5, we may see that the stream func-

,tion patterns are very similar to the geopotential

patterns of Fig. 4. The centres of lows and highs
and positions of troughs and ridges of geopotential
field have been brought out very well. Somewhat
weak gradients in the isolines of stream function
in comparison to contour height gradients of Fig. 4
are due to the fact that the interval of 1108 m?
sec—1 between stream function isolines in this figure
corresponds  approximately to 90 gpm whereas
analysis in Fig. 3 and Fig. 4 is at a closer interval
of 80 gpm.

5. Conclusions

Besides the physical and computational for-
mulations of the model atmosphere, the initial
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Fig. 5. 500 mb stream functions field constructed from

input plays an important role in i:ho quality ‘.’f
final results of diagnostic or prognostic atmospheric
models.  Equispaced grid pf)int data based on
objective or subjective analysis forms an accepted
way of providing input for these nun_w'm_:ul ;][U(lph.-;_
In the case of spectral models, the initial input is
required to be in the form of amplitudes of r.hﬁ'erm'u
meteorological fields. One of the common input in
these models is the geopotential height or the
stream function derived from it. The purpose of
present study was to demonstrate the lnethm.l_ for
transforming these fields from space domain into
spectral domain. A comparison between the actual
geopotential fields and that based on spectral
fcpresentn.tion has shown that the large scale
hemispheric flow patterns can be represented to a
high degree of accuracy in terms of a relatively
limited number of harmonic components, The
stream function spectrum derived from the spectral
solution of linear balance equation also gives
a proper representation of the actual flow patterns.
The centres of synoptic systems are well bronght out

1. 8. BEDI

H * I'ZO

I\

stream function spectral components of 1 January 1969

in the geopotential as well as in the stream function
field based on spectral representation. The spectral
representation, however, smoothens the small and
intense systems to some extent. As in the case of
extended area (hemisphere) models the interest
lies more in the large scale systems, such smoothen-
ing of input is more often desirable than not. Thus
the above scheme can be used effectively to
provide a sitable input for a speetral model.
The work on such model is already in progress.
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APPENDIX
1. Derivation of spectral form of linear balance equation

We write linear balance equation (12) as

/-—-g w1 ; _!p. o Y _'"J’ (‘\.11

We shall make use of recurrence formulae

. m m m 1. pm pm 9
simd P - a) P) , By B 1 (A.2)
a 1 08 _'F an m P ™m o afn U m P m (A 3
ang “9 FF 9— = =2k urh n+1 | (R' ] 'Bu. n-1 RE b )
W P | 1 {4 a | 1711/2
i " (n=—m 1) (h —m +1)7Y
where a : = It i -
(22 4+1)(2n +3)
w (n +m) (n —m) 1/2
" (Z2n—1)2n +1)
2 m n
(Ln'd }g n L n—1

for transforming (A-1) into its spectral form.

On substituting spectral expression for Wand ¢ different terms of (A- [) we get

M | ml - J,
20 | R .
fVEY — — —— sin g z /\ nin+1) " Yr
—_—
m M n=|m|+ 1.2
A ml 4 J,
20 - — -
- ) ] B 1 ysr m ™ 7 m .. m m
. p ? i u(u..l}]”(au)"ll + B Yﬂl)
m=—M n=|ml2
[using (A.2)]
M m| A4 J,
‘) !) \\ o\
o ol ] 1< m oy m L o " m r m
= =2 \ \ (n + 1) (n - e Pv. 1 Ta(n “’.‘3.,, ')U"_ IJ} i
m=—M n=|ml|2 -

(A.4)
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M | m| 4T, o
2 £2cos 0 Z Z gm Wm
Ml N ¥ == R
m=—M n=Ilm|+ 1,2
M |m| 4+ 7y
29 m m m m m
=— Z Z L (-—na" Yn;] +m+1) s ¥L . )
moe=— M ne=|m|,2
[using (A.3)
M | M)+ J,
2 'Q 5 d m m " m
- - ta.i, Z [(n‘i‘ﬂ)a;"}'fﬂd —('N.s-—]]ﬁn tp‘ﬂ”l J Y,
m=—M n=|ml 2
(A.5)
M |m| + Jg +
2 nm+1) m ym o
n=—M a=|ml, 2
From (A-1) and (A-4) to (A-6) we get
M |m| - Jy
20 > > [se+peren, te-vetnerer, |r
m = — M n=|m| 2 -
M |m| 4+ Jq
= nin+1) ¢, Y - (A
m=—M n=1|ml 2

Multiplying both sides of equation (A7) by ¥, *" and integrating over hemispherical domain we get
the spectral form of linear balance equation as :

(n—1) (n +1) B: !P‘::Ll +n(n+42)a :‘ ‘F:‘u = % o7 (A.8)
2. Relation between M and ¥,°
Mean relative ang ular momentum is given by
27 w2
— 1 : R L
M = _iaw_fi'i,l‘ J (Ua cosB)a®cos 6 d.dA (A.9)
0 0

ol ¥ X :
o i’.w," J. ( 30 02 COSeaA)cos 6dodA
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As the second term vanishes on integration along A, we get in terms of spectral expansion
of VP,
" 2% /2 M m | +J1
= 1 N d Py .
M = o o / Prl cos 8 __"" | cosfe™ dgan
2= Ly d 8
0 0 m=—M n=|m 1,2

Clearly the above integral vanishes except for m=0, in which case it gives

3 x/2 ) r('P;
M = f == Z ‘.P(: cos 8§ cos 0d 0 :
] n=1,2 8
72 J,
-— z ¥ (—nal PU, +mnp P2 ) wosa o
0 n=1,2

[using (A.3)]

Due to orthogonality condition (8), the integral on the right -hand side, except that involving
Py° vanish, so that

7 0 o 2 0
‘.'1[— ‘—232 ';Pl = — W_ yfl

@) 3

or gl z = — ;’U.r

(A . 10)




